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Preface

The Workshop on Membrane Computing 2018 was collocated with the 17th In-
ternational Conference on Unconventional Computation and Natural Computation
(UCNC 2018), taking place in Fontainebleau, France, June 25th to 29th, 2018; the
talks of the Workshop on Membrane Computing were presented on June 25th,
2018.

The aim of the Workshop on Membrane Computing at UCNC 2018 was to
bring together researchers working in membrane computing and related fields of
unconventional and natural computation, in a friendly atmosphere enhancing com-
munication and cooperation. The Workshop focused on important new theoretical
and experimental results in membrane computing and their impact on related
fields.

We thank all our colleagues having agreed to join the program committee:

• Artiom Alhazov (Institute of Mathematics and Computer Science, Moldova)
• Lucie Ciencialová (Silesian University in Opava, Czech Republic)
• Erzsébet Csuhaj-Varjú (Eötvös Loránd University, Hungary)
• Rudolf Freund (TU Wien, Austria)
• Sergiu Ivanov (Université Évry, France)
• Raluca Lefticaru (University of Bradford, UK)
• Luca Manzoni (Università degli Studi di Milano-Bicocca, Italy)
• Mario de Jesús Pérez-Jiménez (University of Seville, Spain)
• Antonio Enrico Porreca (Università degli Studi di Milano-Bicocca, Italy)
• Agust́ın Riscos Núñez (University of Seville, Spain)
• György Vaszil (University of Debrecen, Hungary)
• Gexiang Zhang (Southwest Jiaotong University & Xihua University, China)



The final program consisted of two invited talks given by

• Artiom Alhazov (Institute of Mathematics and Computer Science, Moldova):
Matter-Antimatter Annihilation Rules in Membrane Computing

and
• Lucie Ciencialová (Silesian University in Opava, Czech Republic):

APCol Systems with Agent Creation

as well as a regular contribution refereed by two members of the program commit-
tee, presented by David Orellana-Mart́ın,

• David Orellana-Mart́ın, Luis Valencia-Cabrera, Mario J. Pérez-Jiménez:
The Factorization Problem: A New Approach Through Membrane Systems

and two overview talks given by Sergiu Ivanov and Rudolf Freund:

• Sergiu Ivanov: A Note on Polymorphic P Systems

and
• Artiom Alhazov, Rudolf Freund, Sergiu Ivanov: Unfair P Systems.

We thank all the speakers for coming to Fontainebleau and giving their presen-
tations at the Workshop. Moreover, we are very much indebted to Sergey Verlan,
Université Paris Est Créteil, the main organizer of UCNC 2018, for providing us
with the opportunity to hold our workshop at the IUT of Fontainebleau.

Rudolf Freund (TU Wien, Austria)

Sergiu Ivanov (Université Évry, France)

co-chairs of the Workshop on Membrane Computing at UCNC 2018

Fontainebleau, June 2525, 2018
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Matter-Antimatter Annihilation Rules in
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Abstract. We describe research carried out on matter-antimatter an-
nihilation rules in membrane computing, as an elegant tool of restricted
cooperation. While the concept of annihilation rules in membrane com-
puting originates in Spiking Neural P systems, here we mainly focus
on two other models: transitional P systems (where this is usually the
only source of direct or indirect object-to-object cooperation, occasion-
ally combined with a catalyst), and P systems with active membranes
(where these rules often eliminate the need for polarizations and mem-
brane dissolution).
The topics addressed include: computational completeness, deterministic
acceptance, small universal systems, uniform families e�ciently solving
intractable problems, strong NP-completeness, simulating R systems, an-
nihilation without priority, P completeness without membrane division,
P#P characterization with elementary membrane division, and PSPACE
characterization with membrane creation.

1 Introduction

Antimatter (e.g., see [125]) is material composed of antiparticles, which have the
same mass as particles of ordinary matter but have opposite charge. Encounters
between particles and antiparticles lead to the annihilation of the objects, giving
energy proportional to the total matter and antimatter mass, in accordance with
the mass-energy equivalence equation, E = mc2.

The term antimatter was first used by Arthur Schuster in 1898, (see [114]). He
hypothesized antiatoms, as well as whole antimatter solar systems, and discussed
the possibility of matter and antimatter annihilating each other. The modern
theory of antimatter began in 1928, with the papers [34, 35] by Paul Dirac.
Dirac realized that the relativistic version of the Schrödinger wave equation for

? The work is supported by National Natural Science Foundation of China
(61320106005, 61033003, and 61772214) and the Innovation Scientists and Tech-
nicians Troop Construction Projects of Henan Province (154200510012).
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electrons predicted the possibility of antielectrons. These were discovered by
Carl D. Anderson in 1932 [21] and named positrons (a contraction of “positive
electrons”).

In Membrane Computing, the notion of antimatter has first been associated
to anti-spikes in the framework of spiking neural P systems, introduced as an
additional control tool for the flow of spikes in spiking neural P systems, for
example, see [92] and [82, 115, 123]. In this context, when one spike and one
anti-spike appear in the same neuron, the annihilation occurs and both, spike
and anti-spike, disappear. During the Brainstorming Week 2014 in Sevilla the
concept of antimatter was further developed for transitional P systems, e.g.,
see [4] and [5], and later for P systems with active membranes, for example,
see [39]. Currently this is an active research area for multiple models of membrane
systems.

It turned out that combining annihilation rules, which are a specific form of
cooperative erasing, with non-cooperative rules in transitional P systems yields
an elegant computationally complete model. Note that immediate annihilation
precisely corresponds to weak priority of annihilation. It has been shown that
this priority may be removed at the price of adding one catalyst. Then, it has also
been shown that P systems with non-cooperative rules and matter/antimatter
annihilation are computationally complete even in the deterministic case. A vari-
ant with annihilation generating energy was considered, too.

The work of [4] has been continued in [2]. In particular, the computational
completeness results were generalized to computing vectors over Z instead of N,
as well as to computing languages, or even subsets of groups (as languages over
symbols and anti-symbols). A number of universality results involving small
computing devices was obtained in [5], in particular, a universal accepting P
system with 53 rules, simulating a model called generalized counter automata
introduced there for that purpose.

Besides being studied for computational completeness and universality re-
sults involving small computing devices, matter/antimatter annihilation rules
have been considered in the model of P systems with active membranes, for
instance, see [41]. Under the basic settings, i.e., with weak priority of the mat-
ter/antimatter annihilation rules over all the other rules, uniform families of
recognizer P systems with active membranes solve Subset Sum, a well-known
weakly NP-complete problem, and in [38] even a solution for SAT, the famous
strongly NP-complete problem, has been described. Recently it has been shown
in [36] that without the weak priority of the matter/antimatter annihilation rules
over all the other rules, only the complexity class P is characterized within the
framework of recognizer P systems.

We would also like to point out a certain informal resemblance with the
Ge↵ert normal form [57] (in the case of sequential string rewriting), where com-
putational completeness is reached by an elegant combination of context-free
rules and a specific kind of erasing rules.
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2 Computation Theory Remarks

A computation is a sequence of configurations which starts from an initial config-
uration. A configuration describes the current status of the computing machine;
this may include instances of objects, instances of membranes, and any other
entity bearing information. A computation step consists of transformations of
symbols by applying specific kinds of rules. Clearly, computations using rules
without cooperation of symbols are quite limited in power; for example, it is
known that E0L-behavior (i.e., the parallel use of non-cooperating rules as in
Lindenmayer systems) with standard halting yields PsREG (i.e., semi-linear
sets), and accepting P systems are considerably more degenerate.

In this sense, interaction of symbols is a fundamental part of membrane com-
puting, or of theoretical computer science in general. Various ways of interaction
of symbols have been studied in membrane computing. For the models with ac-
tive membranes, the most commonly studied ways are various rules changing
polarizations (or even sometimes labels) and membrane dissolution rules. One
object may engage such a rule, which would a↵ect the context (polarization or
label) of other objects in the same membrane, thus a↵ecting the behavior of
the latter, e.g., in case of dissolution, such objects find themselves in the parent
membrane, which usually has a di↵erent label.

In the literature on P systems with active membranes, often only the rules
with at most one object on the left side have been studied. Recently, the model
with matter/antimatter annihilation rules, e.g., see [2] and [5], have attracted
the attention of researchers. It provides a form of direct object-object interaction,
albeit in a rather restricted way (i.e., by erasing a pair of objects that are in a
bijective relation). Although it is known that non-cooperative P systems with
antimatter are universal, studying their e�ciency turned out to be an interesting
line of research. So how does matter/antimatter annihilation compare to other
ways of organizing interaction of objects?

First, all known solutions of NP-complete (or more di�cult) problems in
membrane computing rely on the possibility of P systems to obtain exponential
space in polynomial time; note that object replication alone does not count as
building exponential space, since an exponential number can be written, e.g.,
in binary, in polynomial space. Such a possibility to obtain exponential space
in polynomial time is provided by either of membrane division rules, membrane
separation rules, see [14, 91, 93], membrane creation rules, see [88], or else by
string replication rules, but string-objects lie outside of the scope of the current
paper. In tissue P systems, one may apply a similar approach to cells instead of
membranes.

Note that in case of cell-like P systems, membrane creation alone (unlike the
other types of rules mentioned above) makes it also possible to construct a hier-
archy of membranes, let us refer to it as structured workspace, which is used to
solve PSPACE-complete problems. The structured workspace can be alterna-
tively created by elementary membrane division plus non-elementary membrane
division (plus membrane dissolution if we have no polarizations).
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Besides creating workspace, to solve NP-complete problems we need to be
able to e↵ectively use that workspace by making objects interact. For instance, it
is known that even with membrane division, without polarizations and without
dissolution, only problems in P may be solved. However, already with two polar-
izations (the smallest non-degenerate value) P systems can solve NP-complete
problems. What can be done without polarizations?

One solution is to use the power of switching the context by membrane dis-
solution. Coupled with non-elementary division, a suitable membrane structure
can be constructed so that the needed interactions can be performed solvingNP-
complete or even PSPACE-complete problems [16]. It is not di�cult to realize
that elementary and non-elementary division rules can be replaced by membrane
creation rules, or elementary division rules can be replaced by separation rules.

Finally, an alternative way of interaction of objects considered in this paper
following [4] is matter/antimatter annihilation. What are the strengths and the
weaknesses of these ingredients (the weaker is a combination of ingredients, the
stronger is the result, while sometimes weaker ingredients do not let us do what
stronger ones can do)?

Using matter/antimatter annihilation makes it possible to carry out multiple
simultaneous interactions (for example, the checking phase in our solution for
SAT is constant-time instead of linear with respect to the number of clauses),
and it is a direct object-object interaction.

The power of dissolution and polarizations is the possibility of mass action
(not critical for studying computational e�ciency within PSPACE as all mul-
tiplicities are bounded with respect to the problem size) by changing context.

Using non-elementary division lets us build structured workspace (probably
necessary for PSPACE if membrane creation is not used instead of membrane
division, unless PPP=PSPACE, see [74]), and change non-local context (e.g.,
the label of the parent membrane).

In [41] it is shown that antimatter is a frontier of tractability in Membrane
Computing (for P systems with active membranes without polarizations and
without membrane dissolution). It is well known that the polynomial complex-
ity class of recognizer P systems with active membranes without polarizations,
without dissolution and with elementary and non-elementary membrane division
is exactly the complexity class P (see [61], Th. 2). On the other side, it has been
proved that if the described P systems model is endowed with dissolution rules,
then NP-complete problems can be solved even without non-elementary mem-
brane division, the result recently having been improved to exactly characterize
P#P, see [74]. Even more, with non-elementary membrane division, PSPACE-
complete problems can be solved, see [16], so exactly PSPACE is characterized,
see [121]. In this way, dissolution is a frontier of tractability.

The polynomial complexity class of recognizer P systems with active mem-
branes without polarizations, without dissolution and with elementary and non-
elementary membrane division (i.e., the class which is equal to P) is considered
with adding antimatter and the corresponding annihilation rules. In this new
model, a uniform family of P systems is described which solves the Subset Sum
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problem, even without non-elementary membrane division. Since the Subset Sum
Problem is NP-complete, this P systems family shows that antimatter is a new
frontier for tractability in Membrane Computing.

In [39] the focus is put on using antimatter and matter/antimatter annihi-
lation rules and on the significantly less power coming up when removing weak
priority of these rules over all the other rules.

3 Overview of Results

In [2] the reader can find multiple developments in the area of P systems with
antimatter:

Computational completeness can be obtained with using only non-coope-
rative rules besides these matter/anti-matter annihilation rules if these
annihilation rules have priority over the other rules. Without this pri-
ority condition, in addition catalytic rules with one single catalyst are
needed to get computational completeness. Even deterministic systems
are obtained in the accepting case. Allowing anti-matter objects as in-
put and/or output, we even get a computationally complete computing
model for computations on integer numbers. Interpreting sequences of
symbols taken in from and/or sent out to the environment as strings, we
get a model for computations on strings, which can even be interpreted
as representations of elements of a group based on a computable finite
presentation.

In [5] small universal P systems with antimatter are explicitly presented.

Theorem 1. [5] There exist small universal P systems with non-cooperative
rules and matter/anti-matter annihilation rules – with 9 annihilation rules and,
in total, 53 rules in the accepting case, 59 rules in the generating case, and 57
rules in the computing case.

P systems with active membranes have been shown to be computation-
ally e�cient, even without polarizations, without dissolution and without non-
elementary membrane division, when enhanced by matter-antimatter annihila-
tion rules.

Theorem 2. [41] NP ✓ PMCAM0
�d,+e,�ne,+ant

.

In [39] this result has been re-proved using SAT, a strongly-NP-complete problem
instead of Subset-Sum.

However, even with non-elementary membrane division, P systems with ac-
tive membranes only characterize complexity class P in case of not having pri-
ority of annihilation rules over other rules.

Theorem 3. [39] PMCAM0
�d,+ne,+ant NoPri

= P.
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The proof follows the one exhibited in [36]. The technique of dependency graphs
is used. Since membrane systems of this class of recognizer P systems are required
to be confluent by definition, for the proof one can choose any computation, e.g.,
one where non-cooperative rules have weak priority over annihilation rules, i.e.,
annihilation would be only applied to objects that do not have non-cooperative
rules associated with them. Then, annihilation is useless, and we are left with a P
system where there is no interaction between di↵erent objects, except membranes
sequentialize usage of rules (other than type (a)) associated to them. Yet, for
any path from (a, i) to (b, env) in the dependency graph, a suitable computation
exists transforming and moving the object accordingly, and all this can be pre-
computed in P.

In [3], it is shown how P systems with antimatter can simulate R systems with
di↵erent time and descriptional complexity, depending on whether the underly-
ing R system is simple or general, and how multiplicities are treated (resetting
multiplicities to one, obtaining the last multiplicity or multiplicative e↵ect), see
Table 1. Here, n is the number of rules, k is the number of objects in the under-
lying R system, and k00  k, k̄  k.

P R mult steps |O| |R1|
⇧13 s M 2 2n+ k 3n+ k
⇧14 s 1 4 2n+ 5k + 4 3n+ 5k + 4
⇧15 g L 3 2n+ 4k + 3 3n+ 3k + k00 + k̄ + 3
⇧16 g 1 5 2n+ 8k + 5 3n+ 7k + k00 + k̄ + 5

Table 1. Comparative table of simulating R systems by P systems.

What problems can be e�ciently solved by P systems with antimatter with-
out using any membrane division (or creation or separation)? Is it not known to
be within P? In [69] it has been shown that this model characterizes the entire
class P, by solving Horn-SAT, a known P-complete problem, by P systems with
active membranes without creating any membranes.

Using membrane creation, it has previously been shown (using either po-
larization or dissolution) that appropriate membrane structures can be created
to solve any problem in PSPACE. In [55] a characterization of PSPACE has
been shown also for P systems with antimatter (antimatter removing the need
for polarizations and dissolution).

It has been shown previously by the Milano group that P systems with active
membranes without polarizations and without non-elementary membrane divi-
sion characterize PPP. A similar result has also been shown in [75] for P system
with antimatter, improving previously known bounds of NP [ co�NP.
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4 Definitions and Remarks

In the following, the reader is assumed to be familiar with the definitions of
transitional membrane systems and membrane systems with active membranes,
as well as with register machines.

The main idea of the model with antimatter is the following. For any object a
we consider anti-object a�, as well as a corresponding annihilation rule aa� ! �,
which is assumed to exist in all membranes; this annihilation rule could be
assumed to remove a pair a, a in zero time, but here we use these annihilation
rules as special cooperative rules having priority over all other rules in the sense
of weak priority.

Remark 1. Assuming weak priority of all annihilation rules over all other rules,
it makes no di↵erence whether the pair of objects is erased in zero time or in one
step. Indeed, it would only make a di↵erence when objects would be produced
on the right side of the annihilation rule, yet this is not the case.

Remark 2. Annihilation rules are not a feature that can be specified in a concrete
P system in a di↵erent way, they are always only deduced from the alphabet and
the matter-antimatter relation, which relation is a bijection over the alphabet,
with the condition that a is equal to its own inverse, i.e., (a�)� = a, and it has
no fixpoint, i.e., a� 6= a for every a.

Remark 3. The weak priority of annihilation rules, i.e., the priority of all annihi-
lation rules over all other rules, is a feature which is either present for the whole
system or not used at all.

Remark 4. For getting better descriptional complexity results, we may omit anti-
objects never appearing in the initial configuration and in the possible input
of the system, and also never appearing in the right side of any rule, i.e., we
remove them from the working alphabet of the system. In addition, we may
omit the corresponding annihilation rules. This has no a↵ect on the behaviour
of the P system. For example, then we only needed 9 annihilation rules in small
computationally complete P systems with antimatter.

Pretty much all computational completeness proofs and universality con-
structions are based on simulating register machines. We would like to recall
that for computational completeness it su�ces to have two decrementable regis-
ters, plus (also decrementable) input registers if any, and output registers which
do not need to be decrementable. For small universality, 8 decrementable reg-
isters are used in the strongly universal register machine of Korec, and only 7
needed for weak universality. Moreover, for improving descriptional complexity
results, a generalization of register machines has been introduced in [5], essen-
tially embedding ADD-instructions into SUB-instructions; this often lead to not
needing any additional rules to simulate ADD-instructions. However, attention
needs to be paid to the output, since in membrane computing it is usually as-
sumed that no non-output objects should be present in the output membrane
upon halting.
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5 Computational Completeness

Theorem 4. [2] For any n � 1, � 2 {gen, acc, aut}, ↵ 2 {acc, aut} and Z 2
{Fun,Rel},

Ps�OPn (ncoo, antim/pri) = PsRE and
ZPs↵OPn (ncoo, antim/pri) = ZPsRE.

Proof. (sketch) Since addition naturally corresponds to non-cooperative rules,
we only need to discuss subtract instructions. For each register-object ar, there
are rules a�r ! #�, ara�r , as well as rules ##� ! �, #� ! ## and # ! ##.

Then instruction l1 : (SUB(r), l2, l3) can be simulated by rule l1 ! l2a�r
(decrement case) or by rules l1 ! l01a

�
r , l

0
1 ! #l3 (zero-test case).

Indeed, decrement is successful if and only if a�r annihilates with one register
object ar, and does not produce #�. On the other hand, zero-test is successful if
and only if # is annihilated with #� produced from a�r in the absence of ar. ut

The next result from [2] replaces priority by one catalyst. There, rule ca�r !
c#� is catalytic, and for the zero-test case an additional dummy-object is pro-
duced, keeping the catalyst busy for one step before giving it a chance to process
a�r . This turn is necessary and su�cient for object a�r to annihilate with the cor-
responding register-object if this register is not zero.

Theorem 5. [2] For any n � 1, � 2 {gen, acc, aut}, ↵ 2 {acc, aut} and Z 2
{Fun,Rel},

Ps�OPn (cat1, antim) = PsRE and
ZPs↵OPn (cat1, antim) = ZPsRE.

Interestingly, acceptance and computing functions can be done in a deter-
ministic way.

Theorem 6. [2] For any n � 1, k � 0, and Y 2 {N,Ps},

YdetaccOPn (cat(k), antim/pri) = Y RE and
FunYdetaccOPn (cat(k), antim/pri) = FunY RE.

Proof. We only need to show how the SUB-instructions of a register machine
M = (m,B, l0, lh, P ) can be simulated in a deterministic way without introduc-
ing a trap symbol and therefore causing infinite loops by them:

For every register r, let B� (r) = {l | l : (SUB (r) , l0, l00) 2 P}, and the rule

a�r !
Q

l2B�(r) l̃
� Q

l2B�(r) l̂;

moreover, we take the annihilation rules arar� ! � as well as l̂l̂� ! � and
l̃l̃� ! � for all l 2 B� (r).
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Any SUB-instruction l1 : (SUB (r) , l2, l3), with l1 2 B� (r), l2, l3 2 B,
1  r  m, is simulated by the rules

l1 ! l̄1ar
�
,

l̄1 ! l̂1�
Q

l2B�(r)\{l1} l̃,

l̂1� ! l2
Q

l2B�(r)\{l1} l̃
�, and

l̃1� ! l3
Q

l2B�(r)\{l1} l̂
�.

The symbol l̂1� generated by the second rule is eliminated again and replaced
by l̃1� if ar� is not annihilated (which indicates that the register is empty). ut

Finally, in [2] the results were generalized to g enerate energy for measuring
the time complexity, generating vectors over all integers, generating languages
of strings, and even languages over computable finite presentations of groups.

6 Small universality

Theorem 7. [5] There exist small universal P systems with non-cooperative
rules and matter/anti-matter annihilation rules – with 9 annihilation rules and,
in total, 53 rules in the accepting case, 59 rules in the generating case, and 57
rules in the computing case.

Proof. We start with a slightly changed variant of the P system from Theorem 4
in [48] (obtained from the universal register machine U32 machine in [70]). This
modified sequential antiport P system with forbidden contexts can be written
with the instructions of a generalized counter machine as follows:

1 : (q1, h1i , {}, h7i , q1), 10 : (q18),
⌦
53
↵
, {}, h4i , q18),

2 : (q1, hi , {1}, h6i , q4), 11 : (q18, hi , {5, 3}, h0i , q1),
3 : (q4, h5i , {}, h6i , q4), 12 : (q18,

⌦
52, 0

↵
, {5, 2}, hi , q1),

4 : (q4, h6i , {5}, h5i , q10), 13 : (q18,
⌦
52, 2

↵
, {5}, hi , q1),

5 : (q10, h7, 6i , {}, h1, 5i , q10), 14 : (q18,
⌦
52
↵
, {5, 2, 0}, hi , q1)

6 : (q10, h7i , {6}, h1i , q4), 15 : (q18, h3i , {5}, hi , q32),
7 : (q10, hi , {6, 7}, hi , q1), 16 : (q18, h5i , {5}, h2, 3i , q32),
8 : (q10, h6, 4i , {7}, hi , q1), 17 : (q32, h4i , {}, hi , q1),
9 : (q10, h6, 5i , {7, 4}, hi , q18), 18 : (q32, hi , {4}, hi , qh).

For a generalized counter automaton M = (m,B, l0, qh, P ), let

k = 1 + max
i:(q,M�,N,M+,q0)2P

(|M�|, |N |).

We consider the following rules (common for di↵erent instructions of M):

#� ! #k, # ! #k, ##� ! �, ar ! #�, ara
�
r ! �, r 2 R.
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Now we present the simulation of instruction i : (q,M�, N,M+, q0) 2 P . First we
consider the case when M� and N have no common elements, and moreover, we
also assume that M� does not overlap with M+ (otherwise such an instruction
can be split into two instructions; notice that this condition is already satisfied
in the rules given above).

q ! li
Y

r2N
ar

�, li ! q0(
Y

r2N
#)(

Y
r2M�

ar
�)

Y
r2M+

ar.

Indeed, the zero-test is successful if none of the objects a�r generated in the first
step annihilates with the corresponding register symbols ar; they have to change
into objects #� to annihilate with the same number of objects # produced
in the next step. The decrement is successful if all objects ar� generated in
the second step annihilate with the corresponding register symbols ar. If either
decrement or zero-test fail, then at least either one # or one #� will be produced
without its annihilation partner, leading to producing objects # in a geometric
progression, ensuring that such computations do not produce any result (notice
that no objects # or #� are produced in the first step of the simulation of any
instruction).

If the zero-test set N is empty, then the first step is a simple renaming, and
thus can be combined with the second step, yielding just one rule

q ! q0(
Y

r2M�
ar

�)
Y

r2M+

ar.

Clearly, if M� and N overlap, such an instruction can be broken down into
two subsequent instructions of the generalized counter automaton. However, a
more e�cient solution with only three rules exists:

q ! li
Y

r2M�
ar

�, li ! l0i
Y

r2N
ar

�, l0i ! q(
Y

r2N
#�)

Y
r2M+

ar.

The generalized counter automaton obtained by rewriting the sequential antiport
P system with inhibitors from [48] (with the modifications described above) has
18 instructions, out of which only 4 have overlaps between the decrement multiset
and the zero-test set, and other 5 have empty zero-test sets. Hence, applying the
constructions described above we get a universal P system with anti-matter
having (18⇥ 2+4� 5)+8+2+ (8+1) = 54 rules, i.e., 45 non-cooperative rules
and 9 model-defined annihilation rules:

⇧ = (O, [ ]1, q1, R1, 1, 1) where

O = {l2, l4, l6, l7, l8, l9, l11, l12, l012, l13, l013, l14, l014, l15, l16, l016, l18}
[ {q1, q4, q10, q18, q32, qh} [ {a, a� | a 2 {aj | 0  j  7} [ {#}}

and R1 contains the following rules:
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q1 ! q1a1�a7,
q1 ! l2a1�, l2 ! q4#a6,
q4 ! q4a5�a6,
q4 ! l4a5�, l4 ! q10#a6�a5,
q10 ! q10a7�a6�a1a5,
q10 ! l6a6�, l6 ! q4#a7�a1,
q10 ! l7a6�a7�, l7 ! q1##,
q10 ! l8a7�, l8 ! q1#a6�a4�,
q10 ! l9a7�a4�, l9 ! q18##a6�a5�,
q18 ! q18a5�a5�a5�a4,
q18 ! l11a5�a3�, l11 ! q1##a0,
q18 ! l12a5�a5�a

�
0 , l12 ! l012a5

�a2�, l012 ! q1##,
q18 ! l13a5�a5�a2�, l13 ! l013a5

�, l013 ! q1#,
q18 ! l14a5�a5�, l14 ! l014a5

�a2�a0�, l014 ! q1###,
q18 ! l15a5�, l15 ! q32#a3�,
q18 ! l16a5�, l16 ! l016a5

�, l016 ! q32#a2a3,
q32 ! q1a4�,
q32 ! l18a4�, l18 ! qh#,
#� ! #4, # ! #4, (##� ! �),
ar ! #�, (arar� ! �), 0  r  7.

As the rules with l7 and l012 on the left side have the same right side, we
can replace l012 by l7, thus decreasing the number of non-cooperative rules down
to 44. In sum, we finish with 53 rules in the accepting case. In the computing
case, we have to “clean” registers 1 and 6 and add the following four rules and
the state q0h:

qh ! qha1
�, qh ! qha6

�, qh ! q0ha1
�a6

�, q0h ! ##.

The P system now halts with the skin membrane only containing copies of the
symbol a2 representing the output value. Finally, in the generating case, we start
with the new initial state q0 and add the two rules q0 ! a2q0 and q0 ! q1, which
allows us to produce, in a non-deterministic way, an input for U32 simulating the
identity function on the domain of the set to be generated by the P system. ut

7 Simulating R Systems

R systems di↵er from P systems in the following ways. First, all positive mul-
tiplicities collapse into one object. Second, all individually applicable rules are
applied simultaneously instead of non-determinism. Third, the next configura-
tion consists of only the objects produced in the current step; the idle objects
do not persist. These features correspond perfectly to TVDH1-systems, but the
nature of objects is atomic, and rule (A,B,C) can be viewed as A ! C|{¬b|b2B},
where A,B,C are sets of objects.
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Here we present one construction from [3]. Consider the general case of sim-
ulating an R system S = (V,w0, R) with R = {(Ai, Bi, Ci) | 1  i  n}. The
simulating P system is given below.

⇧15 = (O,w1 = w0I1, R1 = R1,1 [R1,2 [R1,3) where

O = V [ {a0, (a0)�, a00 | a 2 V } [ {di, d�i | 1  i  n} [ {I1, I2, I3},

R1,1 = {I1 ! I2d1 · · · dn
Y

a2V
a0} [ {a ! (a0)�a00 | a 2 V },

R1,2 = {I2 ! I3} [ {a0(a0)� ! �, (a0)� ! � | a 2 V }

[ {a0 !
Y

a2A
i

d�i | a 2 Ai for some i, 1  i  n}

[ {b00 !
Y

b2B
i

d�i | b 2 Bi for some i, 1  i  n},

R1,3 = {I3 ! I1} [ {did�i ! �, di !
Y

c2C
i

c, d�i ! � | 1  i  n}.

Symbols from Ci are produced from di if and only if di has not been annihi-
lated, i.e., neither a0 nor b00 should produce d�i for any a 2 Ai and b 2 Bi. Since
a0 is annihilated if and only if a is present, and b00 is not produced if and only if
b is absent, the simulation of an application of rule i of the R system happens if
and only if all symbols from the first set Ai are present and all symbols from the
second set Bi are absent. The simulation takes three steps, using an alphabet of
2n+ 4k + 3 symbols and a set of 3n+ 3k + k00 + k̄ + 3 rules, where now k̄ now
denotes the number of symbols appearing in some inhibitor set of any rule.

8 Solving SAT

Propositional Satisfiability is the problem of determining, for a formula of the
propositional calculus, if there is an assignment of truth values to its variables
for which that formula evaluates to true. By SAT we mean the problem of propo-
sitional satisfiability for formulas in conjunctive normal form (CNF).

In the following, we describe the construction of a uniform family of de-
terministic recognizer P systems with active membranes, without polarizations,
without non-elementary membrane division and without dissolution, yet with
matter/antimatter annihilation rules, for solving SAT:

Theorem 8. [39] NP ✓ PMCAM0
�d,+e,+ant

.

Proof. As usual, we will address the resolution via a brute force algorithm, which
consists of the following stages (some of the ideas for the design are taken from
[31] and [110]):

– Generation and Evaluation Stage: All possible assignments associated with
the formula are created and evaluated (in this paper we have subdivided this
group into Generation and Input processing groups of rules, which take place
in parallel).
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– Checking Stage: In each membrane we check whether or not the formula
evaluates to true for the assignment associated with it.

– Output Stage: The system sends out the correct answer to the environment.

Let us consider the pairing function h , i defined by

hn,mi = ((n+m)(n+m+ 1)/2) + n.

This function is polynomial-time computable (it is primitive recursive and bi-
jective from N2 onto N). For any given formula in CNF, ' = C1 ^ · · · ^ Cm,
with m clauses and n variables V ar(') = {x1, . . . , xn} we construct a P system
⇧(hn,mi) solving it, where the multiset encoding the problem to be the input
of ⇧(hn,mi) (for the sake of simplicity, in the following we will omit m and n)
is

cod(') = {xi,j : xj 2 Ci} [ {yi,j : ¬xj 2 Ci}.
For solving SAT by a uniform family of deterministic recognizer P systems

with active membranes, without polarizations, without non-elementary mem-
brane division and without dissolution, yet with matter/antimatter annihilation
rules, we now construct the members of this family as follows:

⇧ = (O,⌃, H = {1, 2}, µ = [ [ ]2 ]1, w1, w2, R, iin = 2), where

⌃ = {xi,j , yi,j | 1  i  m, 1  j  n},
O = {d, t, f, F, F , T, non+5, Fn+5, yesn+6, yesn+6, non+6, yes, no}

[ {xi,j , yi,j | 1  i  m, �1  j  n} [ {xi,�1, yi,�1 | 1  i  m}
[ {ci, ci | 1  i  m} [ {ej | 1  j  n+ 3}
[ {yesj , noj , Fj | 0  j  n+ 5},

w1 = no0 yes0 F0, w2 = dn e1,

and the rules of the set R are given below, presented in the groups Generation,
Input Processing, Checking, and Output, together with explanations about how
the rules in the groups work.

Generation
G1. [ d ]2 ! [ t ]2[ f ]2;
G2. [ t ! y1,�1 · · · ym,�1 ]2;
G3. [ f ! x1,�1 · · ·xm,�1 ]2;
G4. [ xi,�1 ! � ]2, 1  i  m;
G5. [ yi,�1 ! � ]2, 1  i  m.

In each step j, 1  j  n, every elementary membrane is divided, one new
membrane corresponding with assigning true to variable j and the other one with
assigning false to it. One step later, proper objects are produced to annihilate
the input objects associated to variable j: in the true case, we introduce the an-
timatter object for the negated variable, i.e., it will annihilate the corresponding
negated variable, and in the false case, we introduce the antimatter object for
the variable itself, i.e., it will annihilate the corresponding variable. Remaining
barred (antimatter) objects not having been annihilated with the input objects,
are erased in the next step.
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Input Processing

I1. [ xi,j ! xi,j�1 ]2, 1  i  m, 0  j  n;
I2. [ yi,j ! yi,j�1 ]2, 1  i  m, 0  j  n;
I3. [ xi,�1 xi,�1 ! � ]2, 1  i  m;
I4. [ yi,�1 yi,�1 ! � ]2, 1  i  m;
I5. [ xi,�1 ! ci ]2, 1  i  m;
I6. [ yi,�1 ! ci ]2, 1  i  m.

Input objects associated with variable j decrement their second subscript
during j + 1 steps to �1. The variables not representing the desired truth value
are eliminated by the corresponding antimatter object generated by the rules G2
and G3, whereas any of the input variables not annihilated then, shows that the
associated clause i is satisfied, which situation is represented by the introduction
of the object ci.

Checking

C1. [ ej ! ej+1 ]2, 1  j  n+ 1;
C2. [ en+2 ! c1 · · · cmen+3 ]2;
C3. [ ci ci ! � ]2, 1  i  m;
C4. [ ci ! F ]2, 1  i  m;

C5. [ en+3 ! F ]2;

C6. [ F F ! � ]2, 1  i  m;

C7. [ F ]2 ! [ ]2T .

It takes n+ 2 steps to produce objects ci for every satisfied clause, possibly
multiple times. Starting from object e1, we have obtained the object en+2 until
then; from this object en+2, at step n + 2 one anti-object is produced for each
clause. If any of these clause anti-objects ci is not annihilated, then it is trans-
formed into F , showing that the chosen variable assignment did not satisfy the
corresponding clause. It remains to notice that object T is sent to the skin (at
step n+4) if and only if an object F did not get annihilated, i.e., no clause failed
to be satisfied.

Output

O1. [ yesj ! yesj+1 ]1, 0  j  n+ 5;
O2. [ noj ! noj+1 ]1, 0  j  n+ 5;
O3. [ Fj ! Fj+1 ]1, 0  j  n+ 4;

O4. [ T ! non+5Fn+5 ]1;
O5. [ non+5 non+5 ! � ]1;
O6. [ non+6 ]1 ! [ ]1no;

O7. [ Fn+5 Fn+5 ! � ]1;
O8. [ Fn+5 ! yesn+6 ]1;
O9. [ yesn+6 yesn+6 ! � ]1;
O10. [ yesn+6 ]1 ! [ ]1yes.
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If no object T has been sent to the skin, then the initial no-object can count
up to n+6 and then send out the negative answer no, while the initial object F
counts up to n + 5, generates the antimatter object for the yes-object at stage
n+ 6 and annihilates with the corresponding object yes at stage n+ 6. On the
other hand, if (at least one) object T arrives in the skin, then the object no is
annihilated at stage n+ 5 before it would be sent out in the next step, and the
object F is annihilated before it could annihilate with the object yes, so that
the positive answer yes can be sent out in step n+ 6.

Finally, we notice that the solution is uniform, deterministic, and uses only
rules of types (a0), (c0), (e0) as well as matter/antimatter annihilation rules.
The result is produced in n+ 6 steps. ut

9 Discussion

We would like to encourage further research on antimatter in membrane com-
puting. Below we list some open problems/potential research directions that we
think of being interesting/challenging:

– di↵erent models (other than transitional, active membranes and spiking);
– di↵erent ingredients that may influence the power/e�ciency of the model

(other than catalysts and membrane creation);
– di↵erent modes (other than maximal parallelism);
– di↵erent subsets of pairs of symbols that can annihilate (other than disjointly

partitioning the alphabet in O and Ō and a bijection between them);
– di↵erent semantics (other than either priority of all annihilation rules over

all other rules or else no such priority at all);
– di↵erent restrictions (other than no dissolution, no polarizations, and/or

forbidding other cooperating rules than annihilation rules);
– di↵erent measures of descriptional complexity (other than the total number

of rules), and di↵erent kinds of complexity (other than descriptional);
– di↵erent systems to model (other than R systems);
– etc.

We also refer to the conclusions given in [2], [3], [4], [5], [6], [12], [13], [36],
[37], [38], [39], [41], [52], [55], [69], and [75].
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brane Systems. In: H. Jürgensen, J. Karhumäki, A. Okhotin (Eds.): Descriptional
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A. Riscos-Núñez, L. Valencia-Cabrera (Eds.): Thirteenth Brainstorming Week on
Membrane Computing. RGNC Report 1/2015, University of Sevilla, Fénix Edi-
tora, 2015, 121–130.

38. D. Dı́az-Pernil, A. Alhazov, R. Freund, M.A. Gutiérrez-Naranjo: Solving SAT
with Antimatter in Membrane Computing. In: M.J. Dinneen (Ed.): Proceedings
of the Workshop on Membrane Computing 2015 (WMC2015), (Satellite workshop
of UCNC2015), Research Report Series CDMTCS-487, University of Auckland,
48–58.

39. D. Dı́az-Pernil, A. Alhazov, R. Freund, M.A. Gutiérrez-Naranjo, A. Leporati: Rec-
ognizer P Systems with Antimatter. Romanian Journal of Information Science
and Technology 18 (3), 2015, 201–217.

40. D.Dı́az-Pernil, M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez: A
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Active Membranes. In: E. Csuhaj-Varjú, M. Gheorghe, G. Rozenberg, A. Salomaa,
Gy. Vaszil (Eds.): 13th International Conference on Membrane Computing, CMC
2012, Lecture Notes in Computer Science 7762, Springer, 2013, 342–357.

112. G. Rozenberg, A. Salomaa (Eds.): Handbook of Formal Languages, 3 volumes.
Springer, 1997.

113. D. Sburlan: Further Results on P Systems with Promoters/Inhibitors. Interna-
tional Journal of Foundations of Computer Science 17 (1), 2006, 205–221.

114. A. Schuster: Potential Matter. A Holiday Dream. Nature 58, (367) 1898.
115. T. Song, Y. Jiang, Xi. Shi, Xi. Zeng: Small Universal Spiking Neural P Systems

with Anti-spikes. Journal of Computational and Theoretical Nanoscience 10 (4),
2013, 999–1006.



Matter-Antimatter Annihilation Rules in Membrane Computing 29

116. T. Song, L. Luo, J. He, Z. Chen, K. Zhang: Solving Subset Sum Problems by Time-
free Spiking Neural P Systems. Applied Mathematics & Information Sciences 8
(1), 2014, 327–332.

117. T. Song, L. Pan, J. Wang, I. Venkat, K.G. Subramanian, R. Abdullah: Normal
Forms for Spiking Neural P Systems with Anti-spikes. IEEE Transactions on
Nanobioscience 22 (4), 2012, 352–359.

118. T. Song, X. Wang, Z. Zhang, Z. Chen: Homogeneous Spiking Neural P Systems
with Anti-spikes. Neural Computing and Applications 24 (7-8), 2014, 1833–1841.
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120. P. Sośık, M. Langer: Small (Purely) Catalytic P Systems Simulating Register
Machines. Theoretical Computer Science 623, 2016, 65–74.
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Abstract. We introduce a specific type of rules for APCol systems
(Automaton-like P colonies), variants of P colonies where the environ-
ment of the agents is given by a string and during functioning the agents
change their own states and process the string similarly to automata.
These rules enrich the actioning of APCol systems by agent creation.
Finally, we show that even APCol systems with agent creation, systems
without inner structure, can solve 3SAT in linear time.

1 Introduction

APCol systems are variants of P colonies (introduced in [5]) – very simple mem-
brane systems inspired by colonies of formal grammars. The APCol system were
introduce in 2014 in [1]. The interested reader is referred to [9] for detailed infor-
mation on P systems (membrane systems) and to [6] and [3] for more information
on grammar systems theory; for more details on P colonies consult [4] and [2].

An APCol system consists of a finite number of agents – finite collections
of objects in a cell – and a shared environment. The agents have programs
consisting of rules. These rules are of two types: they may change the objects of
the agents and they can be used for interacting with the joint shared environment
– a string.

The computation in APCol systems starts with an input string, representing
the environment, and with each agent in its initial state.

Every computational step means a maximally parallel action of the active
agents: an agent is active if it is able to perform at least one of its programs,
and the joint action of the agents is maximally parallel if no more active agent
can be added to the synchronously acting agents.

The computation ends if there are no more applicable programs in the system.
We equip the agents with agent creation programs. They are applicable when

a special object appears inside the agent. An agent with the special object can
make one copy of itself containing objects specified by the program.

In membrane computing, the notion of creation is not new in P systems. It
was introduced in [7] and in [8]. The membrane creation by membrane division
is the frequently investigated way for obtaining an exponential working space in
a linear time, and on this basis solving hard problems, typically NP-complete
problems, in polynomial (often, linear) time. Details can be found in [[10, 8]].
Recently, PSPACE-complete problems were also attacked in this way (see [12]).
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In this paper, we recall the definition of APCol systems and the notion of
accepting, generating and verifying mode of computation and we introduce the
computing mode. Then we define agent creation actions and show that APCol
system with agent creation can solve 3SAT in polynomial time.

2 Preliminaries and Basic Notions

Throughout the paper we assume the reader to be familiar with the basics of the
formal language theory and membrane computing [11, 9].

For an alphabet ⌃, the set of all words over ⌃, including the empty word, ",
is denoted by ⌃⇤. We denote the length of a word w 2 ⌃⇤ by |w| and the number
of occurrences of the symbol a 2 ⌃ in w by |w|

a

.
For every string x 2 ⌃⇤, perm(x) denotes the set of all permutations of x

and pref(x) denotes the set of prefixes of x.
A multiset of objects M is a pair M = (O, f), where O is an arbitrary (not

necessarily finite) set of objects and f is a mapping f : O ! N ; f assigns
to each object in O its multiplicity in M . Any multiset of objects M with the
set of objects O = {x1, . . . xn

} can be represented as a string w over alphabet
O with |w|

xi
= f(x

i

); 1  i  n. Obviously, all words obtained from w by
permuting the letters can also represent the same multiset M , and " represents
the empty multiset.

2.1 SAT

A SAT problem is represented using n propositional variables x1, x2, . . . , xn

,
which can be assigned truth values 0 (false) or 1 (true). A literal l is either a
variable x

i

(i.e., a positive literal) or its complement ¬x
i

(i.e., a negative literal).
A clause ↵ is a disjunction of literals and a CNF formula ' is a conjunction of
clauses. A literal l

j

of a clause ↵ that is assigned truth value 1 satisfies the clause,
and the clause is said to be satisfied. If the literal is assigned truth value 0 then
it can be removed from the clause. A clause with a single literal is said to be
a unit and its literal has to be assigned value 1 for the clause to be satisfied.
The derivation of an empty clause indicates that the formula is unsatisfied for
the given assignment. The formula is satisfied if all its clauses are satisfied. The
SAT problem consists of deciding whether there exists a truth assignment to the
variables such that the formula becomes satisfied. Determining the satisfiability
of a formula in the conjunctive normal form where each clause is limited to at
most three literals is NP-complete, too; this problem is called 3-SAT.

2.2 APCol Systems

APCol system is a kind of P colonies. It is formed from agents with capacity
2 processing the string. They act according to programs as it is usual in P
colonies. Each program is formed from two rules of two types. The first type
called rewriting is of the form a ! b and by execution of this rule, the object a
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inside the agent is rewritten to the object b. The second type of rules is called
replacing. The rewriting rules are of the form c $ d and by use of them, the
agent replaces the symbol d in the string by object c initially placed inside the
agent. If c = e (e $ d) it means that agent erase symbol d from the string. If
d = e ( c $ e) it means that agent insert symbol d to the string.

Let us make a few comments about the application of the programs.

1. Agent can act in only one place in the string in one step of computation.
2. ha $ b; c $ ei ) b ! ac in the string,

hc $ e; a $ bi ) b ! ca in the string,
ha ! b; c $ ei ) " ! c in the string, insert c anywhere to the string,
and rewrite a to b inside agent
ha $ b; e $ di ) d ! " in the string, delete one d from the string, and
rewrite a to b inside agent

Definition 1. An APCol system is a construct ⇧ = (O, e,A1, . . . , An

), where

– O is an alphabet, its elements are called the objects;

– e 2 O, called the basic object;

– A
i

, 1  i  n, are agents; each agent is a triplet A
i

= (!
i

, P
i

, F
i

), where
• !

i

is a multiset over O, describing the initial state (contents) of the

agent, |!
i

| = 2,
• P

i

= {p
i,1, . . . , pi,ki} is a finite set of programs associated with the agent,

where each program is a pair of rules; each rule is in one of the following

forms:

⇤ a ! b, where a, b 2 O, called an rewriting rule,

⇤ c $ d, where c, d 2 O, called a communication rule;

• F
i

✓ O⇤
is a finite set of final states (contents) of agent A

i

.

The APCol system is called restricted if its each programs consist of one

evolution rule (a ! b) and one communication rule (a $ b).

The computation starts in the initial configuration where all agents contain
their initial multiset of objects and there is an input string over the alphabet
T on the APCol system. Consequently, an initial configuration of the APCol
system is an (n + 1)-tuple c = (!;!1, . . . ,!n

) where w is the initial state of
the environment and the other n components are multisets of strings of objects,
given in the form of strings, the initial states of the agents.

A configuration of an APCol system ⇧ is given by (w;w1, . . . , wn

), where
|w

i

| = 2, 1  i  n, w
i

represents all the objects inside the ith agent and
w 2 (O � {e})⇤ is the string to be processed.

At each step of the computation every agent attempts to find one of its
programs to use. If the number of applicable programs is higher than one, then
the agent non-deterministically chooses one of them. At one step of computation,
the maximal possible number of agents have to be active, i.e., have to perform
a program.

By executing programs, the APCol system passes from one configuration
to another configuration. A sequence of configurations started from the initial
configuration is called a computation. The computation halts when no agent has
an applicable program.
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Accepting mode In the accepting mode a halting computation is called accepting
if and only if at least one agent is in final state and the string to be processed
is ". Hence, the string ! is accepted by the APCol system ⇧ if there exists a
computation by ⇧ such that it starts in the initial configuration (!;!1, . . . ,!n

)
and the computation ends by halting in the configuration (";w1, . . . , wn

), where
at least one of w

i

2 F
i

for 1  i  n.

Generating mode The situation is slightly di↵erent when the APCol system
works in the generating mode. A halting computation is called successful if only
if it starts with empty environmental string and at the end at least one agent
is in a final state. The string w

F

is generated by ⇧ if and only if there exists
computation starting in the initial configuration (";!1, . . . ,!n

) and the compu-
tation ends by halting in the configuration (w

F

;w1, . . . , wn

), where at least one
of w

i

2 F
i

for 1  i  n.

Verifying mode An input string is verified by the APCol system if the computa-
tion process is halting, and moreover, for every i, 1  i  m - supposed that the
length of the input string is m -, each agent rewrites some symbol at position i
in some of the environmental strings occurring in the computation process. This
means that the agents “visit” eavery position (of the input string or that of its
descendants), i.e., they verify the environment.

Computing mode Inspired by computations of a Turing machine we introduce
the computing mode. In the computing mode, a computation starts in an ini-
tial configuration with an input string possibly di↵erent from ". An input string
is accepted if and only if there exists a halting computation starting in a cor-
responding initial configuration and at least one agent is in a final state. We
can also say that an APCol system computes a string that can be found in the
environment after a computation halts and at least one agent is in a final state.

3 APCol Systems with Agent Creation

In this section, we introduce the programs for agent creation. For this pur-
pose, we define a new special object @. If an agent contains such an object,
the agent makes a copy of itself. This action is done by executing a program
formed from two rewriting rules. Let a@ be a contents of agent A1 with program
p1 = h@ ! b; a ! ci. After execution of the program p1 there is one new child-
agent in the APCol system with the same label and the same set of programs as
the parent-agent A1 has. The contents of the parent-agent after the execution
of the program is bc while the contents of the child-agent is ba.

If the parent-agent has a program p2 = ha ! c; @ ! bi, then after the exe-
cution of the program p2 the contents of the parent-agent after the execution of
the program is bc and the contents of the child-agent is bc, too.

The order of rules determines whether the rewriting rule without @ is used
before or after the creation of the child-agent.
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Definition 2. An APCol system with agent creation is a construct

⇧ = (O, e,@, A1, . . . , An

),

where

– O is an alphabet; its elements are called the objects;

– e 2 O, called the basic object;

– @ 2 O, called the agent creation object;

– A
i

, 1  i  n, are agents; each agent is a triplet A
i

= (!
i

, P
i

, F
i

), where
• !

i

is a multiset over O, describing the initial state (contents) of the

agent, |!
i

| = 2;
• P

i

= {p
i,1, . . . , pi,ki} is a finite set of programs associated with the agent,

where each program is a pair of rules; each rule is in one of the following

forms:

⇤ a ! b, where a, b 2 O, called a rewriting rule,

⇤ c $ d, where c, d 2 O, called a communication rule;

if @ appears on the left side of the rule in the program, both rules of this

program must be rewriting;

• F
i

✓ O⇤
is a finite set of final states (contents) of agent A

i

.

When an agent obtains the object @ by the execution of a rewriting or a
communication rule in the program, the agent must create a new agent in the
next step of the computation in the way described in the above definition.

4 Solving 3-SAT

Let ' be a formula in CNF such that every clause ↵
j

in it has at most 3 literals.
Let n be a number of its variables and m be the number of its clauses.

As it is usual for APCol systems we add the special symbol $ to the environ-
mental string as a prefix of the formula.

Lemma 1. Let ' be formula in CNF as mentioned above. Then there exists an

APCol system that encodes the string $' into a string of the form

^1 x11x12x13 ^2 x21x22x23 · · · ^
m

x
m1xm2xm3 ,

where x
ij is l

ij for a positive literal, l
ij for a negative literal or ", in linear time.

The idea of the proof is that there are two agents in APCol system. They
cooperate in replacing triplets of literals by one complex symbol, they erase
parentheses and add indices to ^-symbols. One agent consumes at least one
unread symbol in every second step of the computation; hence, the number of
steps of each computation is at most 2 · (8 ·m� 1).

Theorem 1. To every string corresponding to a formula in CNF with at most

three literals in each clause (encoded by an APCol system from Lemma 1), there

exists a APCol system with agent creation that can determine if it is satisfiable

or not.
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The idea of the proof: We construct a APCol system with agent creation
with two distinct groups of agents.

The first group will generate agents with an object corresponding to the
combination of values of variables inside agents.

The second group of agents will generate agents containing an object corre-
sponding to some triplet-object in a string.

Both groups generate 2n agents in 2 · n steps.
The special agent from the second group puts object false into the string.
After the agents from both groups have been created, the agents from the

first group put their contents into the string. Then the second group starts to
consume them in such a way that they consume at one moment the triplet-
symbols corresponding to the first clause. If the value of the clause is false, the
agent rewrites the symbol of the combination of the values of variables into
false and continues with consuming triplet-objects. After all triplet-objects have
been consumed (this takes m steps), the agents that have not object false inside
generate object true and send it to the string.

The same agent that sends the false object to the string can consume a false
and a true symbol and replace them by one true symbol.

Every computation with correct input string is halting, and the special agent
is in a final state. The environmental string in a halting configuration is formed
from one symbol false or at least one symbol true. No other symbols are present
in a string at the end of a successful computation.

5 Conclusions

We have introduced the new type of APCol systems that contain programs for
agent creation. We have shown that such APCol systems can solve the 3-SAT
problem in linear time.

In future research, we will focus on the use of agent creation programs in 2D
P colonies – P colonies where agents are placed in an environment having the
form of a 2D grid of cells. We will investigate the capability of such a kind of P
colonies to simulate, for example, the spread of an infection.
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Abstract. The factorization problem (given a natural number which is
the product of two prime numbers, find its decomposition) is conjectured
to be intractable and for that it has been used as the key to have se-
cure current cryptosystems. Due to its relevance, this problem has been
studied in various computational paradigms, in particular in membrane

computing. In this framework, recognizer P systems were introduced to
deal with decision problems, that is, problems whose solution/answer is
either “yes” or “no”. The factorization problem is a search problem (also
called function problem), where the question is to identify/find one so-
lution to the set of possible solutions associated with each instance. In
this work, membrane systems computing partial functions are shown to
(e�ciently) solve the factorization problem, improving the previous so-
lutions given in the framework of membrane computing. Specifically, a
family of computing polarizationless P systems with active membranes
using minimal cooperation and minimal production in object evolution
rules, is provided to give a polynomial-time solution to the factorization
problem.

1 Introduction

Membrane computing is a computing paradigm inspired by the structure and
functioning of living cells. It was introduced in [10] by Gheorghe Păun, describing
the basic behavior of these kinds of systems, called membrane systems or P

systems. As a fields within Natural Computing, we take inspiration from nature in
order to define the semantics of the computational model. Membrane computing
takes the minimal functions required to have a living being, that is, replication
of DNA, synthesis of proteins, the use of energy to perform metabolic processes
and methods to regulate itself (e.g., apoptosis). In this way, we can abstract
these chemical reactions by means of mathematical tools, for instance, rewriting
rules, in order to perform computations. There are basically three approaches to
consider computational devices: cell–like membrane systems [10, 11], using the
biological membranes arranged hierarchically, inspired by the structure of the
cell; tissue–like membrane systems [7], using the biological membranes placed in
the nodes of a graph, inspired by the cell inter-communication in tissues; and
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neuron-like P systems [5], inspired by the neurophysiological behavior of neurons
sending electrical impulses (spikes) along axons from presynaptic neurons to
post–synaptic neurons in a distributed and parallel manner. In these variants,
polynomial-time solutions of some computationally hard decision problems has
been provided: SAT [13], HAM-CYCLE [12], 3-COL [2], KNAPSACK, SUBSET-SUM and
PARTITION [15], among others.

Cryptography is a discipline concerning the security of the information in
the presence of possible intruders. For this purpose, several cryptosystems have
been developed, that is, several protocols of security that make harder to a third
party to discover the information that two di↵erent parts want to interchange.
It is important to take into account that the protocol itself does not have to be
secret (for instance, for public-key cryptosystems). In fact, the keys of the most
important cryptosystems are well-known. The di�culty that resides in them is
intrinsic to the problem behind the systems themselves. That is because there is
not known any e�cient classical algorithm to solve them. For instance, the key to
have secure cryptosystems such as RSA, introduced by R. Rivest, A. Shamir and
L. Adleman in [16], is the following version of the factorization problem: given a

natural number n which is the product of two large primes, find its decomposi-

tion. Such a number n is used as the modulus for both public and private keys.
In order to attack it, we need to factorize n into its prime factors. Many systems,
such as banks, medical databases and critical systems with confidential informa-
tion keep their data secure thanks to this method. The factorization problem
is conjectured to be computationally intractable, as some of the problems used
in cryptography, such as KNAPSACK 1 in Merkle-Hellman cryptosystem [8] and
DISCRETE LOGARITHM used in Di�e-Hellman key exchange [3], among others.

In the framework of membrane computing, there were attempts to give a
solution to the factorization problem in [6, 9, 22] with membrane systems. In [6],
a solution is given by using a family of P system with active membranes and
electrical charges, using 4-division rules, that is, by applying this kind of rules a
membrane produces four new membranes, and object evolution rules whose left-
hand side and right-hand sides can have three objects. In [9], a solution is given
by means of a family of asynchronous P systems with active membranes and
electrical charges which use cooperation in object evolution rules and division
rules for non-elementary membranes. In [22], a solution is given by using a family
of tissue P systems with cell division which use symport/antiport rules of length
at most 4.

In this work, a solution of the factorization problem is given by means of
a version of polarizationless P system with active membranes using 2-division
rules only for elementary membranes (that is, by applying this kind of rule an
elementary membrane produces only two new membranes) without dissolution
rules. Specifically, these systems use minimal cooperation (the left-hand sides
have at most two objects) and minimal production (the right-hand sides have
only one object) in objects evolution rules. In order to develop simulators running
on real computers, this kind of membrane system is interesting, for instance, from

1 That is, in fact, an NP-complete problem.
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the GPU computing point of view, just because the algorithm proposed seems
easily translatable to this parallel computing paradigm.

The solution provided in this paper improves the previous ones given in [6, 9,
22]. In this regard, it should be recalled that families of polarizationless P system
with active membranes using division rules and without dissolution rules only
can (e�ciently) solve problems in class P [4].

The paper is organized as follows. The next section briefly describes some
basic aspects in order to make the work self-contained. In Section 3 we define
the syntax and semantics of polarizationless P systems with active membranes
by using membrane division rules and minimal cooperation in evolution rules.
Next, computing membrane systems are introduced in Section 4. Section 5 is
devoted to define the family of P systems that return the factorization of a given
number, followed by an overview of the computation to know what is happening
in each step. The paper ends with some open problems and concluding remarks.

2 Preliminaries

In order to have a precise definition of all the terms that are going to be used
later, we are going to introduce them here.

2.1 Partial Functions

A function f is a set whose elements are ordered pairs verifying the following:
8x 8y 8z [(x, y) 2 f ^(x, z) 2 f ! y = z]. The set {x | 9y (x, y) 2 f} is called the
domain of f and it is denoted by dom(f). The set {x | 9y (y, x) 2 f} is called
the range of f and it is denoted by rang(f).

Given two sets A,B, a partial function f from A onto B is a set verifying
that f ✓ A ⇥ B, dom(f) ✓ A and rang(f) ✓ B. In the case dom(f) = A the
function is called a total function from A onto B.

2.2 Alphabets and Multisets

An alphabet � is a non-empty set. A multiset over an alphabet � is an ordered
pair (�, f) where f is a total function from � onto the set of natural numbers
N. The support of a multiset M = (�, f) is defined as supp(M) = {x 2 � |
f(x) > 0}. A multiset is finite (respectively, empty) if its support is a finite
(resp., empty) set. If � is a finite set then each multiset M = (�, f) is finite and
it will be represented by {af(a) | a 2 supp(M)}.

2.3 Graphs and Trees

A free tree (tree, for short) is a connected, acyclic, undirected graph. A rooted tree

is a tree in which one of the vertices (called the root of the tree) is distinguished
from the others. In a rooted tree the concepts of ascendants and descendants are
defined in a usual way. Given a node x (di↵erent from the root), if the last edge
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on the (unique) path from the root of the tree to the node x is {x, y} (in this
case, x 6= y), then y is the parent of node x and x is a child of node y. The root
is the only node in the tree with no parent. A node with no children is called a
leaf (see [1] for details).

2.4 Binary Representation of Natural Numbers

For each natural number n 2 N we denote [0, 2n+1) = {x 2 N | 0  x < 2n+1}.
Next, we define the binary representation of natural numbers. For each natural
number x 2 N, x � 1, there exist a unique tuple (x0, . . . , xn

) 2 {0, 1}n+1, with
n 2 N and x

n

= 1, such that x = x0 ·20+x1 ·21+. . .+x
n

·2n, that is, x 2 [0, 2n+1).
We say that the finite sequence x

n

· · ·x1x0 or the tuple (x0, . . . , xn

), is the binary
representation of natural number x. We denote k

x

= n, that is, 1 + k
x

is the
number of digits of natural number x � 1 in its binary representation.

Binary representation and, in general, representation of numbers di↵erent
to unary one, is useful because the size of a natural number x (the number of
bits used) in unary representation is x but in binary representation its size is
1+blog2(x)c. Consequently, the size of a natural number expressed in unary form
is exponential in the size of that number expressed in binary form. It is worth
pointing out that within the framework of Membrane Computing work is being
carried out on multisets, and it is usual represents instances of abstract problems
in unary representation (natural numbers are encoded by the multiplicities of
some objects in a multiset).

Given a partial function f from Nq into Nr, with q � 1, r � 1, for each
x = (x1, . . . , xq

) 2 Nq and y = (y1, . . . , yr) 2 Nr such that f(x) = y there exists
a unique natural number k(x,y) defined as follows:

k(x,y) = min{k 2 N | [k � 1] ^ [x1, . . . , xq

, y1, . . . , yr 2 [0, 2k)]}

That is, k(x,y) is the smallest natural number where natural numbers x1, . . . , xq

,
y1, . . . , yr can be represented in binary form with, at most, k(x,y) digits.

3 Polarizationless P Systems with Active Membranes

In [11], P systems with active membranes are introduced as a universal comput-
ing model, that is, it has the same computational power than a Turing machine.
There, a linear time solution to SAT is given, using P systems with active mem-
branes with polarizations and membrane division. As polarizations seem to be
a very powerful tool from the computational complexity point of view, a new
framework not using them is created, the so-called polarizationless P systems
with active membranes. In [4], a frontier of e�ciency is given by means of dis-
solution rules. Passing from forbidding them to allowing them is the same as
passing from non-e�ciency to (strong) e�ciency. In fact, not only NP-complete
problems can be solved in an e�cient way, but a solution to the problem QSAT, a



The Factorization Problem: A New Approach Through Membrane Systems 43

well-known PSPACE-complete problem [14], by means of recognizer polariza-
tionless P systems with membrane division for elementary and non-elementary
membranes and dissolution rules in linear time is given.

In P systems with active membranes, the rules are non-cooperative, that is,
the left-hand side of the rules have only one object. In [18] and [19], a cooperative
version of object evolution rules was introduced. In following investigations, more
restrictions were added to these rules, by considering minimal cooperation (the
left-hand side of the rules have exactly two objects) and minimal production

(the right-hand side of the rules have only one object) in objects evolution rules.
Even restricting these rules to this, a linear-time solution to SAT was provided
in [20] when division rules only for elementary membranes are considered and
dissolution rules are forbidden.

3.1 Syntax

Definition 1. A polarizationless P system with active membranes of degree

p � 1 that makes use of minimal cooperation and minimal production in ob-

ject evolution rules is a tuple ⇧ = (�, H, µ,M1, . . . ,Mp

,R, i
out

), where:

– � is a finite alphabet;

– H is a finite alphabet such that H \ � = ;;
– µ is a labelled rooted tree with p nodes;

– M1, . . . ,Mp

are multisets over � ;

– R is a finite set of rules, of the following forms:

(a) [ a ! c ]
h

or [ a b ! c ]
h

, for h 2 H, a, b, c 2 � (object evolution rules).
(b) a [ ]

h

! [ b ]
h

, for h 2 H, a, b 2 � (send-in communication rules).
(c) [ a ]

h

! b [ ]
h

, for h 2 H, a, b 2 � (send-out communication rules).
(d) [ a ]

h

! b, for h 2 H, a, b 2 � (dissolution rules).
(e) [ a ]

h

! [ b ]
h

[ c ]
h

, for h 2 H, a, b, c 2 � (division rules for elementary

membranes).
(f) [ [ ]

h0 [ ]
h1 ]h ! [ [ ]

h0 ]h [ [ ]
h1 ]h, for h, h0, h1 2 H (division rules

for non-elementary membranes).

A polarizationless P system with active membranes of degree p can be viewed
as a set of p membranes, labelled by elements of H, arranged in a hierarchical
structure µ given by a rooted tree (called membrane structure) whose root is
called the skin membrane, such that: (a) M1, . . . ,Mp

represent the finite mul-
tisets of objects initially placed in the p membranes of the system; (b) R is a
finite set of rules over � associated with the labels; and (c) i

out

2 H [ {env}
indicates the output zone. We use the term zone i to refer to membrane i in the
case i 2 H and to refer to the “environment” of the system in the case i = env.
The leaves of µ are called elementary membranes. In these kind of P systems
where are mechanisms, implemented by division rules, able to generate an expo-
nential workspace (in terms of number of membranes and objects) in polynomial
time. This allows us to describe brute force algorithms in these systems in an
“e�cient” way.
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3.2 Semantics

A configuration C
t

at an instant t of a polarizationless P system with active
membranes is described by the following elements: (a) the membrane structure
at instant t, and (b) all multisets of objects over � associated with all the
membranes present in the system at that moment.

An object evolution rule [ a ! c ]
h

(resp., [ a b ! c ]
h

) is applicable to a
configuration C

t

at an instant t, if there exists a membrane labelled by h in C
t

which contains object a (resp., objects a and b). When applying such a rule,
object a (resp., objects a and b) is consumed and object c is produced in that
membrane.

A send-in communication rule a [ ]
h

! [ b ]
h

is applicable to a configuration
C
t

at an instant t, if there exists a membrane labelled by h in C
t

such that h is
not the label of the root of µ and its parent membrane contains object a. When
applying such a rule, object a is consumed from the parent membrane and object
b is produced in the corresponding membrane labelled by h.

A send-out communication rule [ a ]
h

! b [ ]
h

is applicable to a configuration
C
t

at an instant t, if there exists a membrane labelled by h in C
t

such that it
contains object a. When applying such a rule, object a is consumed from such
membrane h and object b is produced in the parent of such membrane (in the case
that such membrane is the skin then object b is produced in the environment).

A dissolution rule [ a ]
h

! b is applicable to a configuration C
t

at an instant t,
if there exists a membrane labelled by h in C

t

, di↵erent from the skin membrane
and the output zone, such that it contains object a. When applying such a rule,
object a is consumed, membrane h is dissolved and its objects beside an object
b are sent to the parent (or the first ancestor that has not been dissolved).

A division rule [ a ]
h

! [ b ]
h

[ c ]
h

for elementary membrane is applicable to a
configuration C

t

at an instant t, if there exists an elementary membrane labelled
by h in C

t

, di↵erent from the skin membrane and the output zone, such that
it contains object a. When applying such a rule, the membrane with label h
is divided into two membranes with the same label; in the first copy, object a
is replaced by object b, in the second one, object a is replaced by object c; all
the other objects are replicated and copies of them are placed in the two new
membranes.

A division rule [ [ ]
h0 [ ]

h1 ]h ! [ [ ]
h0 ]h [ [ ]

h1 ]h for non-elementary
membrane is applicable to a configuration C

t

at an instant t, if there exists a
membrane labelled by h in C

t

, di↵erent from the skin membrane and the output
zone, which contains a membrane labelled by h0 and another membrane labelled
by h1. When applying such a rule, the membrane with label h is divided into two
membranes with the same label; the first copy inherits membrane h0 with its
contents, and the second copy inherits membrane h1 with its contents. Besides,
if the membrane labelled by h contains more membranes other that those with
the labels h0, h1, then such membranes are duplicated so that they become part
of the contents of both new copies of the membrane h.

In polarizationless P systems with active membranes, the rules are applied
according to the following principles:
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– At one transition step, one object and one membrane can be used by only
one rule, selected in a non-deterministic way.

– At one transition step, a membrane can be the subject of only one rule of
types (b)� (f), and then it is applied at most once.

– Object evolution rules can be simultaneously applied to a membrane with
one rule of types (b)� (f). In any case, object evolution rules are applied in
a maximally parallel manner.

– If at the same time a membrane labelled with h is divided by a rule of type
(e) or (f) and there are objects in this membrane which evolve by means of
rules of type (a), then we suppose that first the evolution rules of type (a)
are used, changing the objects, and then the division is produced. Of course,
this process takes only one transition step.

– The skin membrane and the output membrane, if any, can never get divided
nor dissolved.

Let us notice that in these kind of P systems the environment plays a passive
role in the following sense: along any computation, the environment only can
receive objects from the system but it cannot send objects into the system.

4 Computing Membrane Systems

Let us recall that counting membrane systems, was introduced as a framework
where counting problems (a special case of search problems) can be solved in
a natural way [21]. These systems are inspired from counting Turing machines

introduced by L. Valiant [23] and from recognizer membrane systems where the
Boolean answer of these systems is replaced by an answer encoded by a nat-
ural number expressed in a binary representation (placed in the environment
associated with the halting configuration). On the other hand, the concept of
computing P system was introduced in [17] providing devices in Membrane Com-
puting to compute partial functions from Nq to Nr, with q � 1, r � 1.

Inspired by the previous concepts, (binary) computing membrane systems

is defined in order to compute partial function from Nq to Nr (q � 1, r � 1)
when the natural numbers are considered by means of the corresponding binary
representation.

Definition 2. A (binary) computing membrane system ⇧ of degree (p, q, r),
p � 1, q � 1, r � 1, and order n � 1 is a tuple ⇧ = (⇧ 0,⌃,�, i

in

), where

– ⇧ 0 = (� 0, µ0,M0
1, . . . ,M0

p

,R0) is a membrane system with external output

of degree p.
– ⌃ = {a1,0, . . . , a1,n�1, . . . , aq,0, . . . , aq,n�1} is an ordered set (the input alphabet)

strictly contained in � 0
.

– � = {b1,0, . . . , b1,n�1, . . . , br,0, . . . , br,n�1} is an ordered set (the final alphabet)
strictly contained in � 0

and � \⌃ = ;.
– i

in

is the label of a distinguished membrane of ⇧ 0 (the input membrane).
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Given a (binary) computing membrane system ⇧ = (⇧ 0,⌃,�, i
in

) of degree
(p, q, r) and order n, for each tuple x = (x1, . . . , xq

) 2 Nq such that x
i

2 [0, 2n),
for 1  i  q, there are uniques x

i,j

2 {0, 1}, for 1  i  q, 0  j  n � 1,

verifying x
i

=
P

n�1
j=0 x

i,j

· 2j , we use the following notations:

– cod(x) is the set {ax1,0

1,0 , . . . , a
x1,n�1

1,n�1 , . . . , a
x

q,0

q,0 , . . . , a
x

q,n�1

q,n�1 }.
– ⇧ + cod(x) is the membrane system ⇧ whose the initial configuration is the

tuple (µ0,M0
1, . . . ,M0

i

in

+ cod(x), . . .M0
p

).

In a (binary) computing membrane system ⇧ of degree (p, q, r) and order n,
the following semantics conditions are required: for each natural number x =
(x1, . . . , xq

) 2 Nq such that x
i

2 [0, 2n), for 1  i  q,

– Either any computation of ⇧ + cod(x) is a non-halting computation, or all
computations of ⇧ + cod(x) halt.

– If all computations of ⇧ + cod(x) halt, then there exists a tuple

(y1,0, . . . , y1,n�1, . . . , yr,0, . . . , yr,n�1) 2 {0, 1}r·n

such that for any computation of ⇧+cod(x), the subset of the final alphabet
� contained in the environment associated with the corresponding halting
configuration is {by1,0

1,0 , . . . , b
y1,n�1

1,n�1 , . . . , b
y

r,0

r,0 , . . . , b
y

r,n�1

r,n�1 }.

According with this, the output of the membrane system ⇧+cod(x), in the case
that all their computations halt, denoted by Output(⇧ + cod(x)), is the tuple

(y1,0, . . . , y1,n�1, . . . , yr,0, . . . , yr,n�1) 2 {0, 1}r·n

That is, the output of the membrane system⇧+cod(x) encodes a tuple (y1, . . . , yr) 2
Nr such that y

l

2 [0, 2n), for 1  l  r, and (y
l,0, . . . , yl,n�1) is the binary rep-

resentation of y
l

.

Definition 3. We say that a (binary) computing membrane system ⇧ of degree

(p, q, r) and order n, computes a partial function f from [0, 2n)⇥ (q·n). . . ⇥[0, 2n)

into [0, 2n)⇥ (r·n). . . ⇥[0, 2n), if for each x = (x1, . . . xn

) 2 [0, 2n)⇥ (q·n). . . ⇥[0, 2n),
the following holds:

– f(x) is defined, that is, x 2 dom(f), if and only if all computations of system

⇧ + cod(x) halt.
– f(x) = y, with y =

P
n�1
j=0 y

i,j

· 2j, for 1  i  r, if and only if

Output(⇧ + cod(x)) = (y1,0, . . . , y1,n�1, . . . , yr,0, . . . , yr,n�1)

Definition 4. We say that a family {⇧(k) | k 2 N} of (binary) computing

membrane systems computes a partial function f from Nq

into Nr

if the following

holds:

– For each k 2 N, ⇧(k) is a (binary) computing membrane system of order

k + 1.
– For each x 2 Nq

, f(x) is defined and f(x) = y, with y =
P

k(x,y)

j=0 y
i,j

· 2j,
for 1  i  r, if and only if the output of the system ⇧(k(x,y)) + cod(x) is

the tuple (y1,0, . . . , y1,k(x,y)
, . . . , y

r,0, . . . , yr,k(x,y)
).
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5 Solving the FACTORIZATION problem by Computing
Membrane Systems

Let us recall that the FACTORIZATION problem is the following: given a natural

number which is the product of two prime numbers, find its decomposition. This
problem can be characterized by a partial function FACT from N to N2 defined
as follows: for each natural number x which is the product of two prime num-
bers y, z, with y � z, we have FACT(x) = (y, z). In other words, to solve the
FACTORIZATION problem is equivalent to compute the partial function FACT.

In this paper, a solution to the FACTORIZATION problem is presented by
providing a family {⇧(n) | n 2 N} of (binary) computing polarizationless P
systems with active membranes which make use of minimal cooperation and
minimal production (without dissolution rules and without division rules for
non-elementary membranes), that computes the partial function FACT from N to
N2, previously defined. Specifically, an instance x of the FACTORIZATION problem
will be processed by the membrane system ⇧(k

x

) with input multiset cod(x),
where cod(x) encodes the binary representation of instance x through the input
alphabet of ⇧(k

x

). Bearing in mind that 2  y, z < x we have k
x

= k(x,y,z), and
so x, y, z 2 [0, 2)1+k

x . Besides, 1+k
x

is the maximum number of digits of natural
numbers x, y, z � 1 in its binary representation and the system ⇧(k

x

) has order
k
x

+1. For each natural number n 2 N, we consider the computing polarization-
less P system with active membranes which makes use of minimal cooperation
and minimal production but without dissolution rules and without division for
non-elementary membranes, ⇧(n) = (�,⌃,�, H, µ,M1,M2,R, i

in

, i
out

) of de-
gree (2, 1, 2) and order n+ 1, defined as follows:

(1) Working alphabet:

� = ⌃ [ � [ {#} [ {!
j,k

| 0  j  n, 0  k  17n+ 26} [
{↵1,j,s | 0  j  n, 0  s < j} [
{↵2,j,s | 0  j  n, 0  s < n+ 1 + j} [
{T

h,j

, T
h,j

| 1  h  2, 0  j  n} [
{p

j,k

| 0  j  n, 0  k  5n+ 10} [
{�

h,j,s

| 1  h  2, 0  j  n, 0  s  3n+ 6} [
{P

j,k

| 0  j  n, 0  k  5n+ 8} [ {X
j

, X
j

| 0  j  n} [
{t1,j,s, t1,j,s | 0  j  n, j  s  3n+ 5} [
{t2,j,s, t2,j,s | 0  j  n, n+ 1 + j  s  3n+ 5} [
{T ⇤

h,j

, T
⇤
h,j

| 1  h  2, 0  j  n} [
{P

j

, P
j

, P ⇤
j

, P
⇤
j

| 0  j  n} [ {e
j

, e⇤
j

| 1  j  n} [
{d

j

| 1  j  4n+ 3} [ {d⇤
j

| 2n+ 2  j  4n+ 2} [
{G

k

| 1  k  8n+ 6} [ {T 0
1,j , T

0
1,j | 0  j  n} [

{C
h,j,i

| 0  h  2, 0  j  n, 0  i  n� j} [
{C

h,j

| 0  h  2, 0  j  n} [
{T1,j,k, T 1,j,k | 0  j  n, 0  k  j} [
{T2,j,k, T 2,j,k | 0  j  n, 0  k  n+ 1 + j} [
{y

j

, y
j

, z
j

, z
j

, y⇤
j

, z⇤
j

| 0  j  n}
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where the input alphabet is ⌃ = {a
i

| 0  i  n} and the final alphabet is
� = {b1,j , b2,j | 0  j  n};

(2) H = {1, 2}
(3) Membrane structure: µ = [ [ ]2 ]1, that is, µ = (V,E) where V = {1, 2} and

E = {(1, 2)}
(4) Initial multisets: M1 = {!2

j,0 | 0  j  n}, M2 = {X
j

,↵1,j,0,↵2,j,0,

Tn+4
1,j , T

n+4
1,j , Tn+4

2,j , T
n+4
2,j , p

j,0,!2
j,0, ⌧j,0, zj ,�

n+1
1,j,0,�

n+1
2,j,0 | 0  j  n} [ {P

j,0 |
0  i  2n+ 1}

(5) The set of rules R consists of the following rules:

5.1 Counters
[ a

j

X
j

! X
j

] , for 0  j  n

[↵1,j,s ! ↵1,j,s+1 ]2 , for 0  j  n and 0  s < j
[↵2,j,s ! ↵2,j,s+1 ]2 , for 0  j  n and 0  s < n+ 1 + j

[�1,j,k ! �1,j,k+1 ]2
[�2,j,k ! �2,j,k+1 ]2

�
for 0  j  n, 0  k  3n+ 5

[P
j,k

! P
j,k+1 ]2 , for 0  j  2n+ 1, 0  k  5n+ 7

[ p
i,j

! p
i,j+1 ]2 , for 0  i  n, 0  j  5n+ 9

[ ⌧
j,k

! ⌧
j,k+1 ]2 , for 0  j  n, 0  k  14n+ 11

[!
j,k

! !
j,k+1 ]2 , for 0  j  n, 0  k  15n+ 21

[!
i,j

! !
i,j+1 ]1 , for 0  i  n, 0  j  17n+ 25

5.2 Generation Stage

[↵1,j,j ]2 ! [ t1,j,j ]2 [ t1,j,j ]2
[↵2,j,n+1+j

]2 ! [ t2,j,n+1+j

]2 [ t2,j,n+1+j

]2

�
for 0  j  n

[ t1,j,v ! t1,j,v+1 ]2
[ t1,j,v ! t1,j,v+1 ]2

�
for 0  j  n and j  v  2n

[ t2,j,v ! t2,j,v+1 ]2
[ t2,j,v ! t2,j,v+1 ]2

�
for 0  j  n� 1 and n+ 1 + j  v  2n

[ t
h,j,2n+s

T
h,j

! t
h,j,2n+s+1 ]2

[ t
h,j,2n+s

T
h,j

! t
h,j,2n+s+1 ]2

�
for

1  h  2
0  j  n
1  s  3n+ 4

[ t
h,j,3n+5 Th,j

! # ]2
[ t

h,j,3n+5 Th,j

! # ]2
[�1,j,3n+6 T1,j ! T ⇤

1,j ]2
[�1,j,3n+6 T 1,j ! T

⇤
1,j ]2

[�2,j,3n+6 T2,j ! T ⇤
2,j ]2

[�2,j,3n+6 T 2,j ! T
⇤
2,j ]2

9
>>=

>>;
for 0  j  n, 0  k  3n+ 5

5.3 Multiplication Stage

[T ⇤
1,j T

⇤
2,j0 ! P

j+j

0 ]2
[T ⇤

1,j T
⇤
2,j0 ! P

j

]2
[T

⇤
1,j T

⇤
2,j0 ! P

j

0 ]2
[T

⇤
1,j T

⇤
2,j0 ! # ]2

9
>>>=

>>>;
for 0  j, j0  n
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[P
j

P
j

! P
j+1 ]2

[P
j,5n+8 ! P

j

]2
[P

j

P
j

! P
j

]2
[ p

j,5n+10 Pj

! P ⇤
j

]2
[ p

j,5n+10 P j

! P
⇤
j

]2

9
>>>>=

>>>>;

for 0  j  2n+ 1

5.4 Equality Checking Stage

[P ⇤
j

X
j

! e
j

]2
[P

⇤
j

X
j

! e
j

]2
[P

⇤
j

X
j

! e⇤
j

]2
[P ⇤

j

X
j

! e⇤
j

]2

9
>>=

>>;
for 0  j  n

[ e0 e1 ! d1]2
[ d

j

e
j+1 ! d

j+1 ]2 , for 0  j  n� 1
[ e⇤0 e1 ! G1 ]2
[ e0 e⇤1 ! G1 ]2
[ e⇤0 e

⇤
1 ! G1 ]2

[ d
j

e⇤
j+1 ! G

j+1 ]2
[G

j

e
j+1 ! G

j+1 ]2
[G

j

e⇤
j+1 ! G

j+1 ]2

9
=

; for 0  j  n

[ d
j

P
j+1 ! d

j+1]2
[ d

j

P
j+1 ! G

j+1 ]2
[G

j

P
j+1 ! G

j+1 ]2
[G

j

P
j+1 ! G

j+1 ]2

9
>>=

>>;
forn  j  2n

[G2n+1+j

T1,j ! G2n+2+j

]2
[G2n+1+j

T 1,j ! G2n+2+j

]2
[G3n+2+j

T2,j ! G3n+3+j

]2
[G3n+2+j

T 2,j ! G3n+3+j

]2

9
>>=

>>;
for 0  j  n

5.5 Trivial Solution Check Stage

[ d2n+1 T1,0 ! d2n+2 ]2
[ d2n+1 T 1,0 ! d⇤2n+2 ]2
[ d2n+2+j

T 1,j+1 ! d2n+3+j

]2
[ d2n+2+j

T1,j+1 ! d⇤2n+3+j

]2
[ d⇤2n+2+j

T1,j+1 ! d⇤2n+3+j

]2
[ d⇤2n+2+j

T 1,j+1 ! d⇤2n+3+j

]2

9
>>=

>>;
for 0  j  n� 2

[ d3n+1 T 1,n ! T3n�1 ]2
[ d3n+1 T1,n ! d3n�1 ]2
[ d⇤3n+1 T1,n ! d3n+2 ]2
[ d⇤3n+1 T 1,n ! d3n+2 ]2
[ d3n+2 T2,0 ! d3n ]2
[ d3n+2 T 2,0 ! d⇤3n ]2
[ d3n+3+j

T 2,j+1 ! d3n+4+j

]2
[ d3n+3+j

T2,j+1 ! d⇤3n+4+j

]2
[ d⇤3n+3+j

T2,j+1 ! d⇤3n+4+j

]2
[ d⇤3n+3+j

T 2,j+1 ! d⇤3n+4+j

]2

9
>>=

>>;
for 0  j  n� 2
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[ d4n+2 T 2,n ! T4n+3 ]2

[ d4n+2 T2,n ! d4n+3 ]2

[ d⇤4n+2 T2,n ! d4n+3 ]2
[ d⇤4n+2 T 2,n ! d4n+3 ]2

5.6 First Delete Stage

[G4n+3+j

T1,j ! G4n+4+j

]2
[G4n+3+j

T 1,j ! G4n+4+j

]2
[G5n+4+j

T2,j ! G5n+5+j

]2
[G5n+4+j

T 2,j ! G5n+5+j

]2
[G6n+5+j

T1,j ! G6n+6+j

]2
[G6n+5+j

T 1,j ! G6n+6+j

]2

9
>>>>>>=

>>>>>>;

for 0  j  n

[G7n+6+j

T2,j ! G7n+7+j

]2
[G7n+6+j

T 2,j ! G7n+7+j

]2

�
for 0  j  n� 1

[G8n+6 T2,n ! # ]2
[G8n+6 T 2,n ! # ]2

5.7 Second Delete Stage

[ ⌧
j,14n+12 T1,j ! T 0

1,j ]2
[ ⌧

j,14n+12 T 1,j ! T
0
1,j ]2

�
for 0  j  n

[T
0
1,j T2,j ! C2,j,n�j

]2
[T

0
1,i T 2,j ! C1,j,n�j

]2
[T 0

1,j T2,j ! C1,j,n�j

]2
[T 0

1,j T 2,j ! C0,j,n�j

]2

9
>>>=

>>>;
for 0  j  n

[C1,j,0 C2,j�1,1 ! C2,j�1,0 ]2
[C0,j,0 C2,j�1,1 ! C0,j�1,0 ]2
[C1,j,0 C1,j�1,1 ! C1,j�1,0 ]2

9
=

; for 2  j  n

[C2,j,0 Ci,j�1,1 ! C2,j�1,0 ]2
[C0,j,0 Ci,j�1,1 ! C0,j�1,0 ]2

�
for 0  i  2, 2  j  n

[C1,1,0 C2,0,1 ! C2,0 ]2

[C1,1,0 C0,0,1 ! C0,0 ]2

[C1,1,0 C1,0,1 ! C1,0 ]2

[C2,1,0 Cj,0,1 ! C2,0 ]2
[C0,1,0 Cj,0,1 ! C0,0 ]2

�
for 0  j  2

[C
i,j,k

! C
i,j,k�1 ]2 , for 0  i  2, 2  j  n, 0  k  n

5.8 Output 1 Phase
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[C2,j T1,j ! C2,j+1 ]2
[C2,j T 1,j ! C2,j+1 ]2
[C2,n+1+j

T2,j ! C2,n+2+j

]2
[C2,n+1+j

T 2,j ! C2,n+2+j

]2
[!

j,15n+22 T1,j ! T1,j,j ]2
[!

j,15n+22 T 1,j ! T 1,j,j ]2
[!

j,15n+22 T2,j ! T2,j,n+1+j

]2
[!

j,15n+22 T 2,j ! T 2,j,n+1+j

]2
[T1,j,0 ]2 ! y

j

[ ]2
[T 1,j,0 ]2 ! y

j

[ ]2
[T2,j,0 ]2 ! z

j

[ ]2
[T 2,j,0 ]2 ! z

j

[ ]2

9
>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>;

for 0  j  n

[T1,j,k ! T1,j,k�1 ]2
[T 1,j,k ! T 1,j,k�1 ]2

�
for 0  j  n, 1  k  n

[T2,j,k ! T2,j,k�1 ]2
[T 2,j,k ! T 2,j,k�1 ]2

�
for 0  j  n, 1  k  2n+ 1

5.10 Output 2 Phase
[ y

j

y
j

! y
j

]1
[ y

j

y
j

! y
j

]1
[ z

j

z
j

! z
j

]1
[ z

j

z
j

! z
j

]1
[!

i,17n+26 yj ! y⇤
j

]1
[!

i,17n+26 zj ! z⇤
j

]1
[ y⇤

j

]1 ! b1,j [ ]1
[ z⇤

j

]1 ! b2,j [ ]1

9
>>>>>>>>>>=

>>>>>>>>>>;

for 0  j  n

(6) The input membrane is the membrane labelled by 1 (i
in

= 2) and the output
region is the environment (i

out

= env).

6 An Overview of the Computations

Let x 2 N an instance of the FACTORIZATION problem, that is, x is a natural
number whose binary representation is given by (x0, . . . , xn

), and such that
x = y · z being y and z prime numbers with y � z. Then, x will be processed by
the membrane system ⇧(k

x

) + cod(x), where cod(x) = {ax0
0 , . . . , axn

n

}.
The family {⇧(n) | n 2 N} designed to solve the FACTORIZATION problem

captures the behaviour of a brute force algorithm: (a) all possible pairs of natural
numbers y, z, with y, z  x are produced; (b) the product y · z is computed; and
(c) the output is the pair {y, z} if and only if x = y · z. Next, we briefly describe
the stages in which the computations of membrane system ⇧(n) are structured,
where n = k

x

, being x an instance of the FACTORIZATION problem.

6.1 Generation Stage

At this stage, 22n+2 membranes labelled by 2 are generated in such manner
that each of them contains n + 4 copies of possible candidate pairs of natural
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numbers y, z, whose binary representation have at most n+1 digits, which will
be represented by symbols T ⇤

h,j

and T
⇤
h,j

. For that, first of all, the code cod(x)
of the instance x = (x0, . . . , xn

) changes to {⇢
i

| 0  i  n}, where ⇢
j

= X
j

if
x
j

= 1, ⇢
j

= X
j

if x
j

= 0. From the beginning, division rules to objects ↵1,j,j

and ↵2,j,n+1+j

are applied. Second, objects t
h,j,v

and t
h,j,v

are used in order to
remove undesired objects T

h,j

and T
h,j

. Finally, objects �
h,j,3n+6 will produce

objects T ⇤
h,j

and T
⇤
h,j

encoding all possible di↵erent candidates y, z of natural
numbers in each membrane labelled by 2. This stage takes 3n+ 7 steps.

6.2 Multiplication Stage

At this stage, the pair of natural numbers encoded in each membrane labelled
by 2, is multiplied. For that, first all bits represented by objects T ⇤

1,j or T
⇤
1,j

are multiplied with all bits represented by objects T ⇤
2,j0 or T

⇤
2,j0 , and objects

P
j+j

0 are produced. Second, objects P
j+j

0 are handled in order to be sure that
there is, at most, one bit for each position. In order to have a complete binary
representation of these numbers, that is, the representation of each bit of the
product, we use object P

j

to represent that the bit j equals 1, and object P
j

if
bit j equals 0. This stage takes 2n+ 4 steps.

6.3 Equality Checking Stage

Here, in each membrane labelled by 2, the instance x encoded by objects X
j

and
X

j

is compared to the product y · z, represented by objects P
j

and P
j

. If they
are equal, that is, y ·z = x, then objects encoding y, z remain in that membrane,
and they are removed otherwise. First, objects X

j

and X
j

are compared with
objects P

j

and P
j

. Next, these partial comparisons represented by objects e
j

and
e⇤
j

are used to compare the entire number. If some object T
h,j

, with j � n + 1,
appears, that is, the binary representation of the product has more “useful” bits
than the original number, then all the objects are erased. This stage takes 4n+4
steps.

6.4 Trivial Solution Check Stage

Next, solutions y, z with either y = 1 or z = 1 (trivial solutions) are removed.
For that, bits are checked to be sure that the two numbers are di↵erent from 1,
and remove them otherwise. This stage takes 2n+ 2 steps.

6.5 First Delete Stage

In order to remove remaining objects from a membrane, a garbage recollection
strategy is used, so if an object G4n+3 appears in a membrane, then all objects
in such a membrane are removed. This stage takes 4n+ 4 steps.
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6.6 Second Delete Stage

If y ·z = x and y 6= z then we have two membranes labelled by 2 such that objects
T1,j T 1,j encode y and objects T2,j T 2,j encode z, but one of them represents
that y > z and the other one represents that y < z. In this situation, membrane
containing objects encoding y > z is distinguished and the corresponding objects
of the other membrane are removed. In the case y = z, objects encoding these
natural numbers will be kept in both membranes. For that, objects C

r,j,k

will
be produced. If the j-th bit of number y will be smaller than the j-th bit of z,
then r = 2, on the contrary r = 0. If j-th bit of both y and z are the same one
then r = 1. Later, these objects are used to compare the entire numbers. This
stage takes n+ 2 steps.

6.7 Output 1 Stage

In this stage, objects representing numbers y and z are going to be sent out to
membrane 1. To make this stage deterministic, first objects T1,j and T 1,j and
second objects T2,j and T 2,j are released to membrane labelled by 1. At the end
of the stage, objects y

j

and y
j

represent T1,j and T 1,j in membrane 1. Similarly,

objects z
j

and z
j

represent T2,j and T 2,j in membrane 1. This stage takes 4n+5
steps.

6.8 Output 2 Stage

Finally, binary representations of the numbers y and z are going to be sent out to
the environment by using objects of the final alphabet. First, the perfect square
case (two copies of objects y

j

or y
j

and two copies of objects z
j

or z
j

appear)
has to be taken into account. For that, two objects y

j

(or y
j

) will produce only
one object y

j

(or y
j

), and similarly for objects z
j

and z
j

. Next, each object y
j

(resp., z
j

) will produce an object y⇤
j

(resp., z⇤
j

) cooperating with object !17n+26.
Finally, each object y⇤

j

produce an object b1,j at the environment, and each
object z⇤

j

produce an object b2,j at the environment. This stages takes at most
2n+ 3 steps.

At Table 1, the steps used by each stage, besides the initial and final config-
uration of each one are indicated.

7 Conclusions and Future Work

The FACTORIZATION problem (given a natural number n which is product of two

large primes, find its decomposition) can be characterized by a partial function

FACT from N to N2 defined as follows: for each natural number x which is the
product of two prime numbers y, z, with y � z, we have FACT(x) = (y, z). This
problem belongs to the class FNP and it is conjectured that it is an intractable
problem, assuming that P 6= NP. Besides, it is the basis for some cryptographic
systems as important as RSA, a de facto standard for digital signatures. In order
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Stage Steps Initial configuration Final configuration
Generation 3n+ 7 0 3n+ 7
Multiplication 2n+ 4 3n+ 7 5n+ 11
Equality checking stage 4n+ 4 5n+ 11 9n+ 15
Trivial solution check 2n+ 2 7n+ 13 9n+ 15
First delete 4n+ 4 9n+ 15 13n+ 19
Second delete n+ 2 12n+ 18 13n+ 20
Output 1 4n+ 5 13n+ 20 17n+ 25
Output 2  2n+ 3 17n+ 25  19n+ 28

Table 1. Number of steps by each stage

to provide solutions in the framework of Membrane Computing, new membrane
systems computing partial functions between natural numbers are introduced.

In this work, a linear time solution to the FACTORIZATION problem is pre-
sented by means of a family of polarizationless P system with active membranes
without dissolution rules which use minimal cooperation and minimal produc-
tion in object evolution rules. This solution improves the previous ones given
in the membrane computing framework, in the sense that the use of syntactical
ingredients is significantly lower.

P-Lingua [25] and MeCoSim [24] have been very useful as assistant tools for
the process of verifying this design. An interesting future work is to use this
model in a GPU-based simulator, since it can accelerate the processing of the
computation. Several simulators of P systems have been implemented using the
NVIDIA CUDA framework. In fact, in the PMCGPU project [26] we can see
some simulators for di↵erent types of P systems. Some stages could be optimized
in order to have faster communications between the multiple cores of the graphic
card, like the encoding of objects into integers or the omission of some objects
that only act to synchronize the system. Another way to speed up the algorithm
would be to omit all the membranes containing an element c1,i, because we know
that these bits equal zero in our initial number x.
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sergiu.ivanov@univ-evry.fr

Abstract. Polymorphic P systems are a variant of P systems – a multi-
set-rewriting-based model of computing inspired by the structure and the
functioning of the living cell. In polymorphic P systems, rules are not
statically defined, but instead are dynamically inferred from the contents
of specially designated pairs of membranes. Besides enabling dynamic
modifications of the form of the available rules, polymorphism allows for
embedding rules into the left-hand and right-hand sides of other rules.
The present extended abstract recalls the definition of the model and
reiterates the open questions from the survey paper [1].

1 Introduction

Membrane computing is a research field originally founded by Gheorghe Păun
in 1998 [6]. Membrane computing focuses on membrane systems (also known
as P systems) which is a model of computing based on the abstract notion
of a membrane. Formally, a membrane is treated as a container delimiting a
region; a region may contain objects which are acted upon by the rewriting rules
associated with the membrane. A comprehensive overview of di↵erent flavours
of membrane systems and their expressive power is given in the 2010 handbook
[7]. For a state of the art snapshot of the domain, we refer the reader to the
P systems website [9], as well as to the bulletin of the International Membrane
Computing Society [8].

As indicated by its name, membrane computing draws inspiration from the
structure and functioning of the living cell [5]. Indeed, one can see the cell as a
hierarchical arrangement of containers (rooted at the cellular wall) performing
biochemical processing. Although computer science and cell biology are arguably
distinct domains, they do have one feature in common: the description of the
“program” can be modified by the organism itself. In cells, this paradigm (some-
times referred to as “program is data”) is represented by mechanisms such as
reverse transcription [3], while in computer science this is embodied by the fact
that the program is stored in the memory alongside the data it manipulates.

Polymorphic P systems, originally introduced in [2], are another implemen-
tation of the “program is data” paradigm for membrane systems which does not
limit the set of available rules by a finite cardinality and which allows direct
tampering with the form of the rules. In polymorphic P systems, rules are not
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statically defined, but are instead dynamically inferred from the contents of spe-
cially designated pairs of membranes. One member of such a pair defines the
multiset representing the left-hand side of the rule; the other member defines
the right-hand side.

The present note is an extended abstract of the survey paper [1], which gives
an in-depth overview of the results known about polymorphic P systems. This
note first recalls some basic definitions related to polymorphic P systems (Sec-
tion 2), then shows the classic example of superexponential growth (Section 3),
and ends by listing some potentially interesting open questions (Section 4).

2 Preliminaries

We assume the reader is familiar with the terms and concepts frequently used
in membrane computing and, more generally, in the theory of formal languages.
For an introduction, we refer the reader to [6, 7], as well as to the survey [1].

A polymorphic P system is a construct

⇧ = (O, T, µ, w
s

, hw1L, w1Ri, . . . , hwnL

, w
nR

i, h
i

, h
o

)

where O is a finite alphabet of objects, T is the subalphabet of terminal objects,
µ is a tree structure consisting of 2n + 1 membranes, w

s

is the multiset giving
the contents of the skin membrane, hw

iL

, w
iR

i are pairs of multisets giving the
contents of membranes iL and iR (1  i  n), and h

i

and h
o

are the labels of the
input and the output membranes, respectively, with h

i

2 H and h
o

2 H [ {0},
where 0 denotes the environment. We require that, for every 1  i  n, the
membranes iL and iR have the same containing (parent) membrane. The depth

of (the membrane structure of) ⇧ is defined as for conventional P systems: it is
the height of µ seen as a tree.

The rules of ⇧ are not statically given in its description and are instead
dynamically inferred for each configuration based on the contents of the pairs of
membranes iL and iR. Thus, if in a configuration of the system these membranes
contain the multisets u and v, respectively, then, in the next step, their parent
membrane h will evolve as if it had the multiset rewriting rule u ! v associated
with it. If, however, in some configuration, iL is empty, we consider the rule
defined by the pair hiL, iRi to be disabled, i.e., no rule will be inferred from the
contents of iL and iR.

Polymorphic P systems evolve by applying the dynamically inferred rules
in a maximally parallel way. A computation of a polymorphic P system ⇧ is a
finite sequence of configurations ⇧ may successively visit, ending in the halting
configuration in which no rules can be applied any more in any membrane. Like
for other classes of P systems, the output of ⇧ is the contents of the output
membrane h

o

projected onto the terminal alphabet T .
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3 Superexponential Growth

In this section, we recall the classic example of superexponential growth which
can be achieved by polymorphic P systems [2, 4].

Example 1 (superexponential growth [4]). Consider the following polymorphic P
system:

⇧1 = ({a}, {a}, µ, a, ha, ai, ha, aai, s), where
µ = [ [ ]1L[ [ ]2L[ ]2R ]1R ]

s

.

⇧1 has a superexponential growth rate. A graphical illustration of ⇧1 is given
in Figure 1.

2 : a ! aa

a
1R

a
1L

a
s

Fig. 1. The polymorphic P system ⇧1 with superexponential growth

In the initial configuration, the membranes 1L and 1R define the rule a ! a
in the skin membrane s. Rule 2 in membrane 1R is formally represented by the
pair of membranes h2L, 2Ri, but graphically depicted as a ! aa, because the
contents of 1R and 1R never change.

In the first derivation step, rule 1 (a ! a) is applied in the skin, leaving the
contents of the membrane intact, and rule 2 (a ! aa) is applied in membrane
1R, doubling the number of a’s; therefore, after the first step, rule 1 will be of
the form a ! aa. In the second step of the derivation, rule 1 will transform
the multiset a in the skin into aa, and rule 2 will double the contents of the
right-hand-side membrane 1R once again, thus transforming rule 1 into a ! a4.
Consequently, in the third derivation step, rule 1 will quadruple the number of
a’s in the skin.

In general, after k derivation steps, the contents of the right-hand-side mem-
brane 1R will be 2k, and rule 1 will have the form a ! a2

k

. The number of a’s
in the skin will be given by the product 1 · 2 · 4 · . . . · 2k�1 or, equivalently, by the
following formula:

20 · 21 · 22 · . . . · 2k�1 = 21+2+...+k�1 = 2
k(k�1)

2 .

4 Open Questions

In this section, we will enumerate some of the problems concerning polymorphic
P systems which are still open. For further details, we refer to [1, Section 7].
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4.1 Expressive Power

Question 1 (right polymorphism). Are non-cooperative polymorphic P systems,
in which left-hand-side membranes cannot evolve, less powerful than general
polymorphic P systems?

Question 2 (upper bounds). What are the upper bounds on the expressive power
of non-cooperative polymorphic P systems?

Question 3 (target indications). What is the expressive power of non-cooperative
polymorphic P systems with target indications?

4.2 Better Target Indications

The original article [2] already considers polymorphic rules with target indica-
tions. It turns out that pretty coarse indications, sending the whole right-hand
side into a membrane, already allow building interesting behaviour. However, in
a typical P system, target indications are assigned to individual symbols, not to
entire right-hand sides. The following question seems therefore very natural.

Question 4 (finer targets). What is the most natural way to generalise target
indications attached to individual symbols?

The dynamic nature of polymorphic P systems allows for stating yet further
questions concerning target indications.

Question 5 (dynamic targets). What is the most natural way to define dynamic

targets (i.e. target indications that the systems can modify dynamically)?

Question 6 (polymorphic tissue). What is the most natural way to define poly-
morphic tissue P systems?

4.3 Dissolution and Division

Question 7 (dissolution). What is the most natural way of introducing mem-

brane dissolution for polymorphic P systems?

Question 8 (division). What is the most natural way of introducing membrane

division for polymorphic P systems?

4.4 Applications

Question 9 (optimising simulators). Is polymorphism always easy to be simu-
lated on conventional computers?

Question 10 (polymorphism vs. complexity). Can polymorphism be used for solv-
ing some complex problems faster?

Question 11 (killer applications). What are the problems that polymorphic P
systems can solve faster than conventional P systems?
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Abstract. We reconsider and extend the variants P systems in which
the application of rules in each step is controlled by a function on the
applicable multisets of rules. Some examples are given to exhibit the
power of this general concept. Moreover, for several well-known models
of P systems we show how they can be simulated by P systems with a
suitable fairness function.

1 Introduction

Membrane computing is a research field originally founded by Gheorghe Păun
in 1998, see [6]. Membrane systems (also known as P systems) are a model of
computing based on the abstract notion of a membrane and the rules associated
to it which control the evolution of the objects inside. In many variants of P
systems, the objects are plain symbols from a finite alphabet, but P systems
operating on more complex objects (e.g., strings, arrays) have been considered,
too, e.g., see [3].

A comprehensive overview of di↵erent variants of membrane systems and
their expressive power is given in the handbook, see [7]. For a state of the art
view of the domain, we refer the reader to the P systems website [10] as well as
to the bulletin series of the International Membrane Computing Society [9].

In this paper we reconsider and extend the variants P systems in which the
application of rules in each step is controlled by a function on the applicable
multisets of rules, possibly also depending on the current configuration; we call
this function the fairness function. This new model has first been introduced
in [2] and then also been published in [1]. In the standard variant investigated
there, the fairness function chooses those applicable multisets for which the fair-
ness function yields the minimal value. In this paper, we will mainly focus on
the fairness function taking the maximal value.

After recalling some preliminary notions and definitions in the next section,
in Section 3 we will define the model of fair P systems and give some examples
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to exhibit the power of this general concept. In Section 4, for several well-known
models of P systems we show how they can be simulated by P systems with a
suitable fairness function. Future interesting/challenging research topics finally
are touched in Section 5.

2 Preliminaries

In this paper, the set of positive natural numbers {1, 2, . . . } is denoted by N+,
the set of natural numbers also containing 0, i.e., {0, 1, 2, . . . }, is denoted by N.
The set of integers denoted by Z.

An alphabet V is a finite set. A (non-empty) string s over an alphabet V is
defined as a finite ordered sequence of elements of V .

A multiset over V is any function w : V ! N; w(a) is the multiplicity of a
in w. A multiset w is often represented by one of the strings containing exactly
w(a) copies of each symbol a 2 V ; the set of all these strings representing the
multiset w will be denoted by str(w). The set of all multisets over the alphabet
V is denoted by V �. By abusing string notation, the empty multiset is denoted
by �.

The families of sets of Parikh vectors as well as of sets of natural numbers
(multiset languages over one-symbol alphabets) obtained from a language family
F are denoted by PsF and NF , respectively. The family of recursively enumer-
able string languages is denoted by RE.

For further introduction to the theory of formal languages and computability,
we refer the reader to [7, 8].

2.1 (Hierarchical) P Systems

A hierarchical P system (P system, for short) is a construct

⇧ = (O, T, µ, w1, . . . , wn, R1, . . . Rn, hi, ho),

where O is the alphabet of objects, T ✓ O is the alphabet of terminal objects,
µ is the membrane structure injectively labeled by the numbers from {1, . . . , n}
and usually given by a sequence of correctly nested brackets, wi are the multisets
giving the initial contents of each membrane i (1  i  n), Ri is the finite set of
rules associated with membrane i (1  i  n), and hi and ho are the labels of
the input and the output membranes, respectively (1  hi  n, 1  ho  n).

In the present work, we will mostly consider the generative case, in which ⇧
will be used as a multiset language-generating device. We therefore will system-
atically omit specifying the input membrane hi.

Quite often the rules associated with membranes are multiset rewriting rules
(or special cases of such rules). Multiset rewriting rules have the form u ! v,
with u 2 Oo \ {�} and v 2 Oo. If |u| = 1, the rule u ! v is called non-

cooperative; otherwise it is called cooperative. Rules may additionally be allowed
to send symbols to the neighboring membranes. In this case, for rules in Ri,
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v 2 O ⇥ Tari, where Tari contains the targets out (corresponding to sending
the symbol to the parent membrane), here (indicating that the symbol should
be kept in membrane i), and inj (indicating that the symbol should be sent into
the child membrane j of membrane i).

In P systems, rules are often applied in the maximally parallel way: in
any derivation step, a non-extendable multiset of rules has to be applied. The
rules are not allowed to consume the same instance of a symbol twice, which
creates competition for objects and may lead to the P system choosing non-
deterministically between the maximal collections of rules applicable in one step.

A computation of a P system is traditionally considered to be a sequence
of configurations it successively can pass through, stopping at the halting con-
figuration. A halting configuration is a configuration in which no rule can be
applied any more, in any membrane. The result of a computation of a P system
⇧ as defined above is the contents of the output membrane ho projected over
the terminal alphabet T .

Example 1. For readability, we will often prefer a graphical representation of P
systems; moreover, we will use labels to identify the rules. For example, the P
system ⇧1 = ({a, b}, {b}, [1 ]1, a, R1, 1) with the rule set R1 = {1 : a ! aa, 2 :
a ! b} may be depicted as in Figure 1.

1 : a ! aa

2 : a ! b

a
1

Fig. 1. The example P system ⇧1

Due to maximal parallelism, at every step⇧1 may double some of the symbols
a, while rewriting some other instances into b.

Note that, even though ⇧1 might express the intention of generating the set
of numbers of the powers of two, it will actually generate the whole of N+ (due
to the halting condition). 2

While maximal parallelism and halting by inapplicability have been stan-
dard ingredients from the beginning, various other derivation modes and halting
conditions have been considered for P systems, e.g., see [7].

2.2 Flattening

The folklore flattening construction (see [7] for several examples as well as [4]
for a general construction) is quite often directly applicable to many variants
of P systems. Hence, also for the systems considered in this paper we will not
explicitly mention how results are obtained by flattening.
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3 P Systems with a Fairness Function

In this section we consider variants of P systems using a so-called fairness func-

tion for choosing a multiset of rules out of the set of all multisets of rules appli-
cable to a configuration.

3.1 The General Idea of a Fairness Function in P Systems

Take any (standard) variant of P systems and any (standard) derivation mode.
The application of a multiset of rules in addition can be guided by a function
computed based on specific features of the underlying configuration and of the
multisets of rules applicable to this configuration. The choice of the multiset of
rules to be applied then depends on the function values computed for all the
applicable multisets of rules.

Therefore, in general we extend the model of a hierarchical P system to the
model of a hierarchical P system with fairness function (unfair P system for
short)

⇧ = (O, T, µ, w1, . . . , wn, R1, . . . Rn, hi, ho, f),

where f is the fairness function defined for any configuration C of ⇧, the cor-
responding set Appl�(⇧, C) of multisets of rules from ⇧ applicable to C in the
given derivation mode �, and any multiset of rules R 2 Appl�(⇧, C). We then
use the values f(C,Appl�(⇧, C), R) for all R 2 Appl�(⇧, C) to choose a multiset
R0 2 Appl�(⇧, C) of rules to be applied to the underlying configuration C.

A standard option for choosing R0 is to require it to yield the minimal
value or the maximal value for the fairness function, i.e., we either require
f(C,Appl�(⇧, C), R0)  f(C,Appl�(⇧, C)), R) or else f(C,Appl�(⇧, C), R0) �
f(C,Appl�(⇧, C)), R) for all R 2 Appl�(⇧, C).

In contrast to [2] and [1], in this paper we choose the variant with choosing
R0 to yield the maximal value for the fairness function (instead of the minimal
value). This is the reason for calling the P system with fairness function an unfair

P system.
The fairness function may be independent from the underlying configura-

tion, i.e., we may write f(Appl(⇧, C), R) only; in the simplest case, f is even
independent from Appl(⇧, C), hence, in this case we only write f(R).

As usually the derivation mode � will be obvious from the context, we often
shall omit it.

Fair or Unfair

One may argue that it is fair to use rules in such a way that each rule should
be applied if possible and, moreover, all rules should be applied in a somehow
balanced way. Hence, a fairness function for applicable multisets should compute
the best value for those multisets of rules fulfilling these guidelines.

On the other hand, we may choose the multiset of rules to be applied in such
a way that it is the unfairest one. In this sense, let us consider the following
unfair example.
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Example 2. Consider the P system ⇧1 = ({a, b}, {b}, [1 ]1, a, R1, 1) with the
rule set R1 = {1 : a ! aa, 2 : a ! b} as considered in Example 1 together with
the fairness function f2 defined as follows: if a rule is applied n times then it
contributes to the function value of the fairness function f2 for the multiset of
rules with 4n. The total value for f2(R) for a multiset of rules R containing k
copies of rule 1 : a ! aa and m copies of rule 2 : a ! b then is the sum 4k +4m.
The resulting unfair P system ⇧2 = ({a, b}, {b}, [1 ]1, a, R1, 1, f2) is depicted in
Figure 2; we observe that it can also be written as (⇧1, f2).

1 : a ! aa

2 : a ! b

a; f2
1

Fig. 2. The P system ⇧2

In this unfair P system with one membrane working in the maximally parallel
way, we again start with the axiom a and use the two rules 1 : a ! aa and
2 : a ! b. If we apply only one of these rules to all m objects a, then the
function value is 4m and is maximal compared to the function values computed
for a mixed multiset of rules using both rules at least once (e.g., 4m�1+41 < 4m

for any m � 2).
Starting with the axiom a we use the rule 1 : a ! aa in the maximal way

k times thus obtaining 2k symbols a. Then in the last step, for all a we use the
rule 2 : a ! b thus obtaining 2k symbols b. We cannot mix the two rules in one
of the derivation steps as only the clean use of exactly one of them yields the
maximal value for the fairness function.

We observe that the e↵ect is similar to that of controlling the application of
rules by the well-known control mechanism called label selection, e.g., see [5],
where either the rule with label 1 or the rule with label 2 has to be chosen. We
will return to this model in Section 4.2. 2

The following weird example shows that the fairness function should be cho-
sen from a suitable class of (at least recursive) functions, as otherwise the whole
computing power comes from the fairness function:

Example 3. Take the unfair P system ⇧3 with one membrane working in the
maximally parallel way, starting with the axiom a and using the three rules
1 : a ! aa, 2 : a ! a, and 3 : a ! b, see Figure 3.

Moreover, let M ⇢ N+, i.e., an arbitrary set of positive natural numbers.
The fairness function fM on multisets of rules over these three rules and a
configuration containing m symbols a is defined as follows: For any multiset of
rules R containing copies of the rules 1 : a ! aa, 2 : a ! a, and 3 : a ! b,

– f(R) = 1 if R only contains m copies of rule 3 and m 2 M ,
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1 : a ! aa

2 : a ! a

3 : a ! b

a; fM
1

Fig. 3. The P system ⇧3

– f(R) = 1 if R only contains exactly one copy of rule 1 and the rest are copies
of rule 2,

– f(R) = 0 for any other applicable multiset of rules.

Again the choice is made by applying only multisets of rules which yield the
maximal value f(R) = 1. If we use rule 1 : a ! aa once and rule 2 : a ! a for
the rest, this increases the number of symbols a in the skin membrane by one.
Thus, in m � 1 steps we get m symbols a. If m is in M, we now may use rule
3 : a ! b for all symbols a, thus obtaining m symbols b, and the system halts.
In that way, the system generates exactly {bm | m 2 M}.

To make this example a little bit less weird, we may only allow computable
sets M. Still, the whole computing power is in the fairness function fM alone,
with fM only depending on the multiset of rules. 2

4 Simulation Results

In this section, we show two general results. The first one describes how priorities
can be simulated by a suitable fairness function in P systems of any kind working
in the sequential mode. The second one exhibits how P systems with rule label
control, see [5], can be simulated by suitable unfair P systems for any arbitrary
derivation mode.

4.1 Simulating Priorities in the Sequential Derivation Mode

In the sequential derivation mode, exactly one rule is applied in every derivation
step of the P system ⇧. Given a configuration C and the set of applicable rules
Appl(⇧, C) not taking into account a given priority relation < on the rules, we
define the fairness function to yield 1 for each rule in Appl(⇧, C) for which no
rule in Appl(⇧, C) with higher priority exists, and 0 otherwise. Thus, only a rule
with highest priority can be applied. More formally, this result now is proved for
any kind of P systems working in the sequential derivation mode:

Theorem 1. Let (⇧, <) be a P system of any kind with the priority relation <
on its rules and working in the sequential derivation mode. Then there exists an

unfair P system (⇧, f) with the fairness function f simulating the computations

in (⇧, <) selecting the multisets of rules with maximal values.
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Proof. First we observe that the main ingredient ⇧ is exactly the same in both
(⇧, <) and (⇧, f), i.e., we only replace the priority relation < by the fairness
function f . As already outlined above, for any configuration C of ⇧ we now
define f for any rule r as follows (we point out that here the fairness function
not only depends on {r}, but also on Appl(⇧, C)):

– f(Appl(⇧, C), {r}) = 1 if and only if there exists no rule r0 2 Appl(⇧, C)
such that r < r0, and

– f(Appl(⇧, C), {r}) = 0 if and only if there exists a rule r0 2 Appl(⇧, C)
such that r < r0.

If we now define the task of f as choosing only those rules with maximal value,
i.e., a rule r can be applied to configuration C if and only if f(Appl(⇧, C), {r}) =
1, then we obtain the desired result.

4.2 Simulating Label Selection

In P systems with label selection only rules belonging to one of the predefined
subsets of rules can be applied to a given configuration, see [5].

For all the variants of P systems defined in Section 2, we may consider to
label all the rules in the sets R1, . . . , Rm in a one-to-one manner by labels from
a set H and to take a set W containing subsets of H. Then a P system with label

selection is a construct

⇧ ls = (O, T, µ, w1, . . . , wn, R1, . . . Rn, hi, ho, H,W ),

where ⇧ = (O, T, µ, w1, . . . , wn, R1, . . . Rn, hi, ho) is a P system as in Section 2,
H is a set of labels for the rules in the sets R1, . . . , Rm, and W ✓ 2H . In any
transition step in ⇧ ls we first select a set of labels U 2 W and then apply a
non-empty multiset R of rules applicable in the given derivation mode restricted
to rules with labels in U .

The following proof exhibits how the fairness function can also be used to
capture the underlying derivation mode.

Theorem 2. Let (⇧, H,W ) be a P system with label selection using any kind

of rules in any kind of derivation mode. Then there exists an unfair P system

(⇧ 0, f) with fairness function f simulating the computations in (⇧, H,W ) with

f selecting the multisets of rules with maximal values.

Proof. By definition, in the P system (⇧, H,W ) with label selection a multiset
of rules can be applied to given configuration only if all the rules have labels in
a selected set of labels U 2 W . We now consider the set of all multisets of rules
applicable to a configuration C, denoted by Applasyn(⇧, C), as it corresponds
to the asynchronous derivation mode (abbreviated asyn); from those we select
all R which obey to the label selection criterion, i.e., there exists a U 2 W such
that the labels of all rules in R belong to U , and then only take those which
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also fulfill the criteria of the given derivation mode restricted to rules with labels
from U .

Hence we define (⇧ 0, f) by taking ⇧ 0 = ⇧ and, for any derivation mode �,
f� for any multiset of rules R 2 Applasyn(⇧, C) as follows:

– f�(C,Applasyn(⇧, C), R) = 1 if there exists a U 2 W such that the labels of
all rules in R belong to U , and, moreover, R 2 Appl�(⇧U , C), where ⇧U is
the restricted version of ⇧ only containing rules with labels in U , as well as

– f�(C,Applasyn(⇧, C), R) = 0 otherwise.

According to our standard selection criterion, we choose only those multisets of
rules where the fairness function yields the maximal value 1, i.e., those R such
that there exists a U 2 W such that the labels of all rules in R belong to U and
R is applicable according to the underlying derivation mode with rules restricted
to those having a label in U , which exactly mimicks the way of choosing R in
(⇧, H,W ). Therefore, in any derivation mode �, (⇧ 0, f�) simulates exactly step
by step the derivations in (⇧, H,W ), obviously yielding the same computation
results.

5 Conclusions and Future Research

In this article, we reconsidered and partially studied P systems with the ap-
plication of rules in each step being controlled by a function on the applicable
multisets of rules yielding the maximal function value.

We have given several examples exhibiting the power of using suitable fairness
functions. Moreover, we have shown how priorities can be simulated by a suitable
fairness function in P systems of any kind working in the sequential mode as well
as how P systems with label selection can be simulated by unfair P systems with
a suitable fairness function for any derivation mode.

Yet with all these examples and results we have just given a glimpse on what
could be investigated in the future for P systems in connection with fairness
functions:

– consider other variants of hierarchical P systems working in di↵erent deriva-
tion modes, e.g., also taking into consideration the set derivation modes;

– extend the notion of (un)fair to tissue P systems, i.e., P systems on an
arbitrary graph structure;

– extend the notion of (un)fair to P systems with active membranes, there
probably also controlling the division of membranes;

– investigate the e↵ect of selecting the multiset of rules to be applied to a given
configuration by other criteria than just taking those yielding the maximal
or minimal values for the fairness function;

– consider other variants of fairness functions, either less powerful or taking
into account other features of Appl(⇧, C) and/or the multiset of rules R;

– investigate the e↵ect of selecting the multiset to be applied to a given config-
uration by requiring it to contain a balanced (really fair) amount of copies
of each applicable rule;
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– show similar simulation results with suitable fairness functions as in Section 4
for other control mechanisms used in the area of P systems;

– . . .
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